Laboratory Simulation of Earthquake-Induced Damage in Lava Dome Rocks

Main Article Content

Lauren Schaefer
Jackie E. Kendrick
Yan Lavallée
Jenny Schauroth
Oliver D. Lamb
Lamur Anthony
Takahiro Miwa
Ben M. Kennedy


Earthquakes can impart varying degrees of damage and permanent, inelastic strain on materials, potentially resulting in ruptures that may promote hazards such as landslides and other collapse events. However, the accumulation of damage in rocks under the frequency and amplitude of shaking experienced during earthquake events is rarely systematically measured due to technical limitations. Here, we characterize damage evolution during laboratory experiments on a suite of dacitic rocks from Unzen volcano, Japan, to help resolve accumulated damage and landslide susceptibility of lava domes during regional earthquake events. Damage was imparted during slow (time-dependent creep) and fast (stress-oscillation earthquake simulations) uniaxial loading in compression and tension. Damage evolution is approximated from strain during experiments; all samples accumulate strain during earthquake events, but microfracture-dominated samples tend to be more susceptible to damage than vesicle-dominated samples. The orientation of existing fabrics with respect to loading direction dictates the magnitude of strain accumulation under load oscillations. During each “earthquake” experiment of multiple dynamic stress-oscillations, samples accumulate inelastic strain. The strain imparted during each successive event is initially high and then reduces after 5-7 events, except when stressing results in failure. The strain rate during phases of intermittent stressing tends to be higher than prior to them. Understanding the accumulation of damage and the potential for brittle failure of rocks subjected to earthquakes can help define the origin and timing of certain landslides, rockfalls, lava dome collapses, and other failure events.

Article Details

How to Cite
Schaefer, L., Kendrick, J., Lavallée, Y., Schauroth, J., Lamb, O., Anthony, L., Miwa, T., & Kennedy, B. (2023). Laboratory Simulation of Earthquake-Induced Damage in Lava Dome Rocks. τeκτoniκa, 1(1), 112–126.


Almberg, L. D., J. F. Larsen, J. C. Eichelberger, T. A. Vogel, and L. C. Patino (2008), Comparison of eruptive and intrusive samples from unzen volcano, japan: Effects of contrasting pressure–temperature–time paths, Journal of Volcanology and Geothermal Research, 175(1), 60–70, doi: 10.1016/j.jvolgeores.2008.03.020.

Andrews, D. J., T. C. Hanks, and J. W. Whitney (2007), Physical limits on ground motion at yucca mountain, Bulletin of the Seismological Society of America, 97(6), 1771–1792, doi: 10.1785/0120070014.

ASTM (2014), Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, Tech. Rep. ASTM Standard D7012-14e1, American Society for Testing and Materials (ASTM), doi: 10.1520/D7012-14E01.

ASTM (2016), Standard test method for splitting tensile strength of intact rock core specimens, Tech. Rep. ASTM Standard D3967–08, American Society for Testing and Materials (ASTM), doi: 10.1520/D3967-08.

Attewell, P. B., and I. W. Farmer (1973), Fatigue behaviour of rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10(1), 1–9, doi: 10.1016/0148-9062(73)90055-7.

Ball, J. L., P. H. Stauffer, E. S. Calder, and G. A. Valentine (2015), The hydrothermal alteration of cooling lava domes, Bulletin of Volcanology, 77(12), 102, doi: 10.1007/s00445-015-0986-z.

Bell, A. F., S. Hernandez, J. McCloskey, M. Ruiz, P. C. LaFemina, C. J. Bean, and M. Möllhoff (2021), Dynamic earthquake triggering response tracks evolving unrest at sierra negra volcano, galápagos islands, Science advances, 7(39), eabh0894, doi: 10.1126/sciadv.abh0894.

Belousov, A. B. (1995), The shiveluch volcanic eruption of 12 november 1964—explosive eruption provoked by failure of the edifice, Journal of Volcanology and Geothermal Research, 66(1), 357–365, doi: 10.1016/0377-0273(94)00072-O.

Borgia, A., L. Ferrari, and G. Pasquarè (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of mount etna, Nature, 357(6375), 231–235, doi: 10.1038/357231a0.

Brantut, N., M. J. Heap, P. G. Meredith, and P. Baud (2013), Time-dependent cracking and brittle creep in crustal rocks: A review, Journal of Structural Geology, 52, 17–43, doi: 10.1016/j.jsg.2013.03.007.

Brenguier, F., M. Campillo, T. Takeda, Y. Aoki, N. M. Shapiro, X. Briand, K. Emoto, and H. Miyake (2014), Earthquake dynamics. mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345(6192), 80–82, doi: 10.1126/science.1254073.

Calder, E. S., R. Luckett, R. S. J. Sparks, and B. Voight (2002), Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at soufrière hills volcano, montserrat, Geological Society, London, Memoirs, 21(1), 173–190, doi: 10.1144/GSL.MEM.2002.021.01.08.

Casagli, N., F. Catani, C. Del Ventisette, and G. Luzi (2010), Monitoring, prediction, and early warning using ground-based radar interferometry, Landslides, 7(3), 291–301, doi: 10.1007/s10346-010-0215-y.

Cerfontaine, B., and F. Collin (2018), Cyclic and fatigue behaviour of rock materials: Review, interpretation and research perspectives, Rock Mechanics and Rock Engineering, 51(2), 391–414, doi: 10.1007/s00603-017-1337-5.

Coats, R., J. E. Kendrick, P. A. Wallace, T. Miwa, A. J. Hornby, J. D. Ashworth, T. Matsushima, and Y. Lavallée (2018), Failure criteria for porous dome rocks and lavas: a study of mt. unzen, japan, Solid earth, 9(6), 1299–1328, doi: 10.5194/se-9-1299- 2018.

Cordonnier, B., K.-U. Hess, Y. Lavallee, and D. B. Dingwell (2009), Rheological properties of dome lavas: Case study of unzen volcano, Earth and planetary science letters, 279(3), 263–272, doi: 10.1016/j.epsl.2009.01.014.

Diederichs, M. S. (2003), Manuel rocha medal recipient rock fracture and collapse under low confinement conditions, Rock Mechanics and Rock Engineering, 36(5), 339–381, doi: 10.1007/s00603-003-0015-y.

Donnadieu, F., O. Merle, and J.-C. Besson (2001), Volcanic edifice stability during cryptodome intrusion, Bulletin of Volcanology, 63(1), 61–72, doi: 10.1007/s004450000122.

Eberhardt, E., D. Stead, and B. Stimpson (1999), Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression, International Journal of Rock Mechanics and Mining Sciences, 36(3), 361–380, doi: 10.1016/S0148- 9062(99)00019-4.

Enescu, B., K. Shimojo, A. Opris, and Y. Yagi (2016), Remote triggering of seismicity at japanese volcanoes following the 2016 m7.3 kumamoto earthquake, Earth, Planets and Space, 68(1), 1–9, doi: 10.1186/s40623-016-0539-5.

Farías, C., and D. Basualto (2020), Reactivating and calming volcanoes: The 2015 M W 8.3 illapel megathrust strike,

Geophysical research letters, 47(16), doi: 10.1029/2020gl087738.

Farquharson, J. I., P. Baud, and M. J. Heap (2017), Inelastic compaction and permeability evolution in volcanic rock, Solid earth, 8(2), 561–581, doi: 10.5194/se-8-561-2017.

Fujita, E., T. Kozono, H. Ueda, Y. Kohno, S. Yoshioka, N. Toda, A. Kikuchi, and Y. Ida (2013), Stress field change around the mount fuji volcano magma system caused by the tohoku megathrust earthquake, japan, Bulletin of Volcanology, 75(1), 679, doi: 10.1007/s00445-012-0679-9.

Hashimoto, T. M., K. Aizawa, Y. Hayashida, Y. Yuasa, T. Matsushima, Y. Yamamoto, K. Tsukamoto, K. Miyano, S. Matsumoto, and H. Shimizu (2020), Joint seismological–magnetotelluric investigation of shallow and implosive non-DC and DC earthquakes beneath the gravitationally unstable Heisei-Shinzan lava dome, unzen volcano, japan, Journal of Volcanology and Geothermal Research, 406, 107,066, doi: 10.1016/j.jvolgeores.2020.107066.

Heap, M. J., and M. E. S. Violay (2021), The mechanical behaviour and failure modes of volcanic rocks: a review, Bulletin of Volcanology, 83(5), 33, doi: 10.1007/s00445-021-01447-2.

Heap, M. J., S. Vinciguerra, and P. G. Meredith (2009), The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from mt. etna volcano, Tectonophysics, 471(1), 153–160, doi: 10.1016/j.tecto.2008.10.004.

Hirakawa, Y., N. Usuki, K. Fujita, T. Tanaka, M. Kaneko, T. Ueno, H. Eguchi, and K. Shimokubo (2018), Monitoring system of a large rockslide in Heisei-Shinzan lava dome, mt. unzen, japan, in Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim.

Hornby, A. J., J. E. Kendrick, O. D. Lamb, T. Hirose, S. De Angelis, F. W. von Aulock, K. Umakoshi, T. Miwa, S. Henton De Angelis,

F. B. Wadsworth, K.-U. Hess, D. B. Dingwell, and Y. Lavallée (2015), Spine growth and seismogenic faulting at mt. unzen, japan, Journal of Geophysical Research, [Solid Earth], 120(6), 4034–4054, doi: 10.1002/2014jb011660.

Hornby, A. J., Y. Lavallée, J. E. Kendrick, S. De Angelis, A. Lamur, O. D. Lamb, A. Rietbrock, and G. Chigna (2019), Brittle-ductile deformation and tensile rupture of dome lava during inflation at santiaguito, guatemala, Journal of Geophysical Research, [Solid Earth], 124(10), 10,107–10,131, doi: 10.1029/2018jb017253.

Inoue, K. (1999), Shimabara-Shigatusaku earthquake and topographic changes by shimabara catastrophe in 1792, Journal of the Japan Society of Erosion Control Engineering, 52(4), 45–54, doi: 10.11475/sabo1973.52.4_45.

Intrieri, E., F. Raspini, A. Fumagalli, P. Lu, S. Del Conte, P. Farina, J. Allievi, A. Ferretti, and N. Casagli (2018), The maoxian landslide as seen from space: detecting precursors of failure with sentinel-1 data, Landslides, 15(1), 123–133, doi: 10.1007/s10346-017-0915-7.

Kato, A., K. Nakamura, and Y. Hiyama (2016), The 2016 kumamoto earthquake sequence, Proceedings of the Japan Academy. Series B, Physical and biological sciences, 92(8), 358–371, doi: 10.2183/pjab.92.359.

Keefer, D. K. (1984), Landslides caused by earthquakes, GSA Bulletin, 95(4), 406–421, doi: 10.1130/0016- 7606(1984)95<406:LCBE>2.0.CO;2.

Kendrick, J. E., R. Smith, P. Sammonds, P. G. Meredith, M. Dainty, and J. S. Pallister (2013), The influence of thermal and cyclic stressing on the strength of rocks from mount st. helens, washington, Bulletin of Volcanology, 75(7), 728, doi: 10.1007/s00445-013-0728-z.

Kendrick, J. E., L. N. Schaefer, J. Schauroth, A. F. Bell, O. D. Lamb, A. Lamur, T. Miwa, R. Coats, Y. Lavallée, and B. M. Kennedy (2021), Physical and mechanical rock properties of a heterogeneous volcano: the case of mount unzen, japan, Solid Earth, 12(3), 633–664, doi: 10.5194/se-12-633-2021.

Kerr, R. A. (1984), Landslides from volcaooes seen as common: Given the example of mount st. helens’ catastrophic collapse, geologists are recognizing volcanic debris avalanches elsewhere, Science, 224(4646), 275–276, doi: 10.1126/science.224.4646.275.

Klein, E., and T. Reuschlé (2004), A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime, International Journal of Rock Mechanics and Mining Sciences, 41(6), 975–986, doi: 10.1016/j.ijrmms.2004.03.003.

Kohashi, S., S. Shimokawa, K. Shimizu, Y. Satohira, T. Yamada, and T. Kimura (2012), Document for the committee of survey and countermeasure on lava dome collapse in unzen volcano (in japanese), Tech. rep., Shimabara-shi Uto-cho.

Kueppers, U., B. Scheu, O. Spieler, and D. B. Dingwell (2005), Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from unzen volcano, japan, Journal of Volcanology and Geothermal Research, 141(1), 65–75, doi: 10.1016/j.jvolgeores.2004.09.005.

Lamb, O. D., S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée (2015), Repetitive fracturing during spine extrusion at unzen volcano, japan, Solid earth, 6(4), 1277–1293, doi: 10.5194/se-6-1277-2015.

Lamb, O. D., S. De Angelis, R. J. Wall, A. Lamur, N. R. Varley, G. Reyes-Dávila, R. Arámbula-Mendoza, A. J. Hornby, J. E. Kendrick, and Y. Lavallée (2017), Seismic and experimental insights into eruption precursors at volcán de colima, Geophysical research letters, 44(12), 6092–6100, doi: 10.1002/2017GL073350.

Lamur, A., J. E. Kendrick, L. N. Schaefer, Y. Lavallée, and B. M. Kennedy (2023), Damage amplification during repetitive seismic waves in mechanically loaded rocks, Scientific reports, 13(1), 1271, doi: 10.1038/s41598-022-26721-x.

Lavallée, Y., and J. E. Kendrick (2021), Chapter 5 - a review of the physical and mechanical properties of volcanic rocks and magmas in the brittle and ductile regimes, in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, vol. 2, edited by P. Papale, pp. 153–238, Elsevier, doi: 10.1016/B978-0-12-818082-2.00005-6.

Lesage, P., G. Reyes-Dávila, and R. Arámbula-Mendoza (2014), Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in volcán de colima, mexico, Journal of Geophysical Research, [Solid Earth], 119(5), 4360–4376, doi: 10.1002/2013jb010884.

Liu, Y., and F. Dai (2021), A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading, Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1203–1230, doi: 10.1016/j.jrmge.2021.03.012.

Lockner, D. A., and N. M. Beeler (2002), 32 - rock failure and earthquakes, in International Geophysics, vol. 81, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, pp. 505–537, Academic Press, doi: 10.1016/S0074-6142(02)80235-2.

Lockner, D. A., and C. A. Morrow (2008), Energy dissipation in calico hills tuff due to pore collapse, in 2008 AGU Fall Meeting, vol. 2008, pp. T51A–1856.


earth and planetary sciences, 26(1), 643–696, doi: 10.1146/

Matsushima, T., and A. Takagi (2000), GPS and EDM monitoring of unzen volcano ground deformation, Earth, Planets and Space, 52(11), 1015–1018, doi: 10.1186/BF03352323.

Miyabuchi, Y. (1999), Deposits associated with the 1990–1995 eruption of unzen volcano, japan, Journal of Volcanology and Geothermal Research, 89(1), 139–158, doi: 10.1016/S0377-0273(98)00129-2.

Miyano, K., K. Aizawa, T. Matsushima, A. Shito, and H. Shimizu (2021), Seismic velocity structure of unzen volcano, japan, and relationship to the magma ascent route during eruptions in 1990-1995, Scientific reports, 11(1), 22,407, doi: 10.1038/s41598-021-00481-6.

Nakada, S., and Y. Motomura (1999), Petrology of the 1991–1995 eruption at unzen: effusion pulsation and groundmass crystallization, Journal of Volcanology and Geothermal Research, 89(1), 173–196, doi: 10.1016/S0377-0273(98)00131-0.

Nakada, S., H. Shimizu, and K. Ohta (1999), Overview of the 1990–1995 eruption at unzen volcano, Journal of Volcanology and Geothermal Research, 89(1), 1–22, doi: 10.1016/S0377-0273(98)00118-8.

Paterson, M. S., and T.-F. Wong (2005), Experimental Rock Deformation - The Brittle Field, 2 ed., Springer Berlin Heidelberg, doi: 10.1007/b137431.

Reid, M. E., T. E. C. Keith, R. E. Kayen, N. R. Iverson, R. M. Iverson, and D. L. Brien (2010), Volcano collapse promoted by progressive strength reduction: new data from mount st. helens, Bulletin of Volcanology, 72(6), 761–766, doi: 10.1007/s00445-010-0377-4.

Rodrı́guez, C. E., J. J. Bommer, and R. J. Chandler (1999), Earthquake-induced landslides: 1980–1997, Soil Dynamics and Earthquake Engineering, 18(5), 325–346, doi: 10.1016/S0267-7261(99)00012-3.

Rutter, E. H. (1986), On the nomenclature of mode of failure transitions in rocks, Tectonophysics, 122(3), 381–387, doi: 10.1016/0040-1951(86)90153-8.

Saito, H., S. Uchiyama, Y. S. Hayakawa, and H. Obanawa (2018), Landslides triggered by an earthquake and heavy rainfalls at aso volcano, japan, detected by UAS and SfM-MVS photogrammetry, Progress in Earth and Planetary Science, 5(1), 1–10, doi: 10.1186/s40645-018-0169-6.

Sato, H., T. Fujii, and S. Nakada (1992), Crumbling of dacite dome lava and generation of pyroclastic flows at unzen volcano,

Nature, 360(6405), 664–666, doi: 10.1038/360664a0.

Satou, Y., T. Ishizuka, S. Kuraoka, and Y. Nakashima (2014), Deformation characteristics of unzen lava dome based on long range displacement monitoring, in Proceedings of 2014 INTERPREAEVENT International Symposium, pp. 25–28.

Schaefer, L. N., J. E. Kendrick, T. Oommen, Y. Lavallée, and G. Chigna (2015), Geomechanical rock properties of a basaltic volcano, Frontiers of earth science, 3, doi: 10.3389/feart.2015.00029.

Schaefer, L. N., B. M. Kennedy, J. E. Kendrick, Y. Lavallée, and T. Miwa (2020), Laboratory measurements of damage evolution in dynamic volcanic environments: From slow to rapid strain events, 54th U.S. Rock Mechanics/Geomechanics Symposium,

pp. ARMA–2020–1876.

Scheu, B., U. Kueppers, S. Mueller, O. Spieler, and D. B. Dingwell (2008), Experimental volcanology on eruptive products of unzen volcano, Journal of Volcanology and Geothermal Research, 175(1), 110–119, doi: 10.1016/j.jvolgeores.2008.03.023.

Scholz, C. H. (1968), The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bulletin of the Seismological Society of America, 58(1), 399–415, doi: 10.1785/BSSA0580010399.

Scholz, C. H., and T. A. Koczynski (1979), Dilatancy anisotropy and the response of rock to large cyclic loads, Journal of geophysical research, 84(B10), 5525, doi: 10.1029/jb084ib10p05525.

Schultz, R. A. (1995), Limits on strength and deformation properties of jointed basaltic rock masses, Rock Mechanics and Rock Engineering, 28(1), 1–15, doi: 10.1007/BF01024770.

Shi, X., Y. Jiang, and Y. Hirakawa (2018), Growth and potential collapse of the lava dome in unzen volcano and the estimation on block-and-ash flows, Geosciences Journal, 22(2), 273–286, doi: 10.1007/s12303-017-0051-3.

Thouret, J.-C., R. Salinas, and A. Murcia (1990), Eruption and mass-wasting-induced processes during the late holocene destructive phase of nevado del ruiz volcano, colombia, Journal of Volcanology and Geothermal Research, 41(1), 203–224, doi: 10.1016/0377-0273(90)90089-X.

Voight, B. (2000), Structural stability of andesite volcanoes and lava domes, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1770), 1663–1703, doi: 10.1098/rsta.2000.0609.

Voight, B., H. Glicken, R. J. Janda, and P. M. Douglass (1981), Catastrophic rockslide avalanche of may 18, in The 1980 Eruptions of Mount St. Helens, Washington, vol. 1250, edited by P. W. Lipman and D. R. Mullineaux, pp. 347–377, US Geological Survey, doi: 10.3133/pp1250.

Wallace, C. S., L. N. Schaefer, and M. C. Villeneuve (2021), Material properties and triggering mechanisms of an andesitic lava dome collapse at shiveluch volcano, kamchatka, russia, revealed using the finite element method, Rock Mechanics and Rock Engineering, 55(5), 2711–2728, doi: 10.1007/s00603-021-02513-z.

Wallace, P. A., J. E. Kendrick, T. Miwa, J. D. Ashworth, R. Coats, J. E. P. Utley, S. Henton De Angelis, E. Mariani, A. Biggin,

R. Kendrick, S. Nakada, T. Matsushima, and Y. Lavallée (2019), Petrological architecture of a magmatic shear zone: A multidisciplinary investigation of strain localisation during magma ascent at unzen volcano, japan, Journal of Petrology, 60(4), 791–826, doi: 10.1093/petrology/egz016.

Walter, T. R., R. Wang, M. Zimmer, H. Grosser, B. Lühr, and A. Ratdomopurbo (2007), Volcanic activity influenced by tectonic earthquakes: Static and dynamic stress triggering at mt. merapi, Geophysical research letters, 34(5), doi: 10.1029/2006GL028710.

Walter, T. R., M. Haghshenas Haghighi, F. M. Schneider, D. Coppola, M. Motagh, J. Saul, A. Babeyko, T. Dahm, V. R. Troll,

F. Tilmann, S. Heimann, S. Valade, R. Triyono, R. Khomarudin, N. Kartadinata, M. Laiolo, F. Massimetti, and P. Gaebler (2019), Complex hazard cascade culminating in the anak krakatau sector collapse, Nature communications, 10(1), 4339, doi: 10.1038/s41467-019-12284-5.

Xiao, J.-Q., D.-X. Ding, G. Xu, and F.-L. Jiang (2009), Inverted s-shaped model for nonlinear fatigue damage of rock, International Journal of Rock Mechanics and Mining Sciences, 46(3), 643–648, doi: 10.1016/j.ijrmms.2008.11.002.

Yamamoto, T., S. Takarada, and S. Suto (1993), Pyroclastic flows from the 1991 eruption of unzen volcano, japan, Bulletin of Volcanology, 55(3), 166–175, doi: 10.1007/BF00301514.

Yates, A. S., M. K. Savage, A. D. Jolly, C. Caudron, and I. J. Hamling (2019), Volcanic, coseismic, and seasonal changes detected at white island (whakaari) volcano, new zealand, using seismic ambient noise, Geophysical research letters, 46(1), 99–108, doi: 10.1029/2018gl080580.