MORGen: an Algorithm to Compute Spreading Centre and Transform Geometries from Simple Initial Plate Boundaries and Euler Rotations

Main Article Content

Thomas van der Linden
Douwe van Hinsbergen

Abstract

The age structure of the global ocean floor is a key feature in paleogeographic reconstructions, which in turn forms the quantitative basis for Earth System Science. However, much of the ocean floor in paleogeographic reconstructions has been lost to subduction. The age structure of such lost ocean floor is constructed from the reconstructions of adjacent continents, using the relative rotations, around Euler poles to predict the geometry of spreading centres and transform faults. Building such mid-ocean ridge features in paleogeographic reconstructions is laborious, as it requires redrawing of ridge-transform systems upon every Euler pole shift in the model. In this paper, we present the Mid-Ocean Ridge Generator (MORGen) algorithm, based on pyGPlates. MORGen reduces the laborious task by automating the drawing of mid-ocean ridge geometries from geometrically simple plate boundary input assuming ridge-perpendicular spreading and adjusts ridge geometries in a simplest-scenario fashion by gradually adjusting ridge orientation and transform fault length upon Euler pole shifts, inspired by observations from the modern sea floor. The code takes as input curved line features, representing approximate divergent plate boundaries, and a set of Euler poles. These are then converted into spreading centre-transform geometries. Upon Euler pole shifts, the geometries are adjusted to fit the set of small circles and great circles dictated by the new Euler pole. For studies of paleo-environment and paleo-oceanography MORGen can be used in combination with other algorithms for full reconstructions of ocean floors, including their age, bathymetry, and roughness.  For in-situ preserved ocean floor, the paleo-age distribution can be reconstructed directly in high resolution from geophysical and geological data from the modern ocean floor and MORGen would not normally be the option of choice. In cases where models contain ocean floor that has now been subducted, MORGen straightforwardly facilitates mid-ocean ridge geometry reconstruction. To illustrate how well the MORGen algorithm reproduces real ocean floor age structure, we show a synthetic ridge evolution for the South Atlantic and Southern Oceans and compare this to geophysically constrained ocean floor geometry. In addition, we show examples of use cases where direct (re)construction of mid ocean ridges is not possible: now-subducted ocean basins in the Mediterranean region and an ocean in a future supercontinent scenario.

Article Details

How to Cite
van der Linden, T., & van Hinsbergen, D. (2023). MORGen: an Algorithm to Compute Spreading Centre and Transform Geometries from Simple Initial Plate Boundaries and Euler Rotations. τeκτoniκa, 1(2), 1–10. https://doi.org/10.55575/tektonika2023.1.2.14
Section
Articles

References

Baatsen, M., D. J. J. van Hinsbergen, A. S. Von Der Heydt, H. A. Dijkstra, A. Sluijs, H. A. Abels, and P. K. Bijl (2016), Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Climate of the Past, 12(8), 1635–1644, doi: 10.5194/cp-12-1635-2016.

Bernard, A., M. Munschy, Y. Rotstein, and D. Sauter (2005), Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data, Geophysical Journal International, 162(3), 765–778, doi: 10.1111/j.1365- 246X.2005.02672.x.

Bird, P. (2003), An updated digital model of plate boundaries, Geochemistry, Geophysics, Geosystems, 4(3), doi: 10.1029/2001GC000252.

Boschman, L. M., and D. J. J. van Hinsbergen (2016), On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean, Science Advances, 2(7), doi: 10.1126/sciadv.1600022.

Bosworth, W. (1985), Geometry of propagating continental rifts, Nature, 316(6029), 625–627, doi: 10.1038/316625a0.

Boyden, J. A., R. D. Müller, M. Gurnis, T. H. Torsvik, J. A. Clark, M. Turner, H. Ivey-Law, R. J. Watson, and J. S. Cannon (2011), Next-generation plate-tectonic reconstructions using GPlates, in Geoinformatics, edited by G. R. Keller and C. Baru, pp. 95–114, Cambridge University Press, Cambridge, doi: 10.1017/cbo9780511976308.008.

Cande, S. C., P. Patriat, and J. Dyment (2010), Motion between the Indian, Antarctic and African plates in the early Cenozoic, Geophysical Journal International, 183(1), 127–149, doi: 10.1111/j.1365-246X.2010.04737.x.

Cox, A., and R. B. Hart (1986), Plate Tectonics : How It Works, Wiley-Blackwell.

Domeier, M. (2016), A plate tectonic scenario for the Iapetus and Rheic oceans, Gondwana Research, 36, 275–295, doi: 10.1016/j.gr.2015.08.003.

Domeier, M. (2018), Early Paleozoic tectonics of Asia: Towards a full-plate model, Geoscience Frontiers, 9(3), 789–862, doi: 10.1016/j.gsf.2017.11.012.

Domeier, M., and T. H. Torsvik (2014), Plate tectonics in the late Paleozoic, Geoscience Frontiers, 5(3), 303–350, doi: 10.1016/j.gsf.2014.01.002.

Domeier, M., and T. H. Torsvik (2019), Full-plate modelling in pre-Jurassic time, Geological magazine, 156(2), 261–280, doi: 10.1017/S0016756817001005.

Gaina, C., T. H. Torsvik, D. J. J. van Hinsbergen, S. Medvedev, S. C. Werner, and C. Labails (2013), The African Plate: A history of oceanic crust accretion and subduction since the Jurassic, Tectonophysics, 604, 4–25, doi: 10.1016/j.tecto.2013.05.037.

Gerya, T. (2010), Dynamical instability produces transform faults at mid-ocean ridges, Science, 329(5995), 1047–1050, doi: 10.1126/science.1191349.

Ghidella, M. E., G. Yáñez, and J. L. LaBrecque (2002), Revised tectonic implications for the magnetic anomalies of the western Weddell Sea, Tectonophysics, 347(1-3), 65–86, doi: 10.1016/S0040-1951(01)00238-4.

Guan, Q., T. Zhang, B. Taylor, J. Gao, and J. Li (2021), Ridge jump reorientation of the South China Sea revealed by high- resolution magnetic data, Terra Nova, 33(5), 475–482, doi: 10.1111/ter.12532.

Gurnis, M., T. Yang, J. Cannon, M. Turner, S. Williams, N. Flament, and R. D. Müller (2018), Global tectonic reconstructions with continuously deforming and evolving rigid plates, Computers and Geosciences, 116, 32–41, doi: 10.1016/j.cageo.2018.04.007.

Karlsen, K. S., M. Domeier, C. Gaina, and C. P. Conrad (2020), A tracer-based algorithm for automatic generation of seafloor age grids from plate tectonic reconstructions, Computers and Geosciences, 140, 1–20, doi: 10.1016/j.cageo.2020.104508.

Labrecque, J. L., and D. E. Hayes (1979), Seafloor spreading history of the Agulhas Basin, Earth and planetary science letters, 45(2), 411–428, doi: 10.1016/0012-821X(79)90140-7.

Luhr, J. F., S. A. Nelson, J. F. Allan, and I. S. E. Carmichael (1985), Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump, Geology, 13(1), 54, doi: 10.1130/0091-7613(1985)13<54:ARISMM>2.0.CO;2.

Marks, K. M., and J. M. Stock (2001), Evolution of the Malvinas Plate South of Africa, Marine Geophysical Researches, 22(4), 289–302, doi: 10.1023/A:1014638325616.

Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, and R. D. Müller (2016), Global plate boundary evolution and kinematics since the late Paleozoic, Global and planetary change, 146, 226–250, doi: 10.1016/j.gloplacha.2016.10.002.

McKenzie, D. P., and R. L. Parker (1967), The North Pacific: an Example of Tectonics on a Sphere, Nature, 216(5122), 1276–1280, doi: 10.1038/2161276a0.

Menard, H. W., and T. Atwater (1968), Changes in direction of sea floor spreading, Nature, 219(5153), 463–467, doi: 10.1038/219463a0.

Merdith, A. S., A. S. Collins, S. E. Williams, S. Pisarevsky, J. D. Foden, D. B. Archibald, M. L. Blades, B. L. Alessio, S. Armistead, and D. Plavsa (2017), A full-plate global reconstruction of the Neoproterozoic, Gondwana Research, 50, 84–134. doi: 10.1016/j.gr.2017.04.001

Merdith, A. S., S. E. Atkins, and M. G. Tetley (2019), Tectonic Controls on Carbon and Serpentinite Storage in Subducted Upper Oceanic Lithosphere for the Past 320 Ma, Frontiers of Earth Science in China, 7, doi: 10.3389/feart.2019.00332.

Merdith, A. S., S. E. Williams, A. S. Collins, M. G. Tetley, J. A. Mulder, M. L. Blades, A. Young, S. E. Armistead, J. Cannon, S. Zahirovic, and R. D. Müller (2021), Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth-Science Reviews, 214, 103,477, doi: 10.1016/j.earscirev.2020.103477.

Morgan, W. J. (1991), Rises, Trenches, Great Faults and Crustal Blocks, Tectonophysics, 187(1-3), 6–22, doi: 10.1016/0040- 1951(91)90408-K.

Mueller, C. O., and W. Jokat (2019), The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor, Tectonophysics, 750, 301–328, doi: 10.1016/j.tecto.2018.11.008.

Müller, R. D., J.-Y. Royer, S. C. Cande, W. R. Roest, and S. Maschenkov (1999), Chapter 2 New constraints on the late cretaceous/tertiary plate tectonic evolution of the caribbean, in Sedimentary Basins of the World, vol. 4, edited by P. Mann, pp. 33–59, Elsevier, doi: 10.1016/S1874-5997(99)80036-7.

Müller, R. D., M. Seton, S. Zahirovic, S. E. Williams, K. J. Matthews, N. M. Wright, G. E. Shephard, K. T. Maloney, N. Barnett- Moore, M. Hosseinpour, D. J. Bower, and J. Cannon (2016), Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual review of earth and planetary sciences, 44(1), 107–138, doi: 10.1146/annurev-earth- 060115-012211.

Müller, R. D., J. Cannon, X. Qin, R. J. Watson, M. Gurnis, S. Williams, T. Pfaffelmoser, M. Seton, S. H. J. Russell, and S. Zahirovic (2018), GPlates: Building a Virtual Earth Through Deep Time, Geochemistry, Geophysics, Geosystems, 19(7), 2243–2261, doi: 10.1029/2018GC007584.

Müller, R. D., S. Zahirovic, S. E. Williams, J. Cannon, M. Seton, D. J. Bower, M. G. Tetley, C. Heine, E. Le Breton, S. Liu, S. H. J. Russell, T. Yang, J. Leonard, and M. Gurnis (2019), A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic, Tectonics, 38(6), 1884–1907, doi: 10.1029/2018TC005462.

Nürnberg, D., and R. D. Müller (1991), The tectonic evolution of the South Atlantic from Late Jurassic to present, Tectonophysics, 191(1-2), 27–53, doi: 10.1016/0040-1951(91)90231-G.

Owen-Smith, T. M., M. Ganerød, D. J. J. van Hinsbergen, C. Gaina, L. D. Ashwal, and T. H. Torsvik (2019), Testing Early Cretaceous Africa–South America fits with new palaeomagnetic data from the Etendeka Magmatic Province (Namibia), Tectonophysics, 760, 23–35, doi: 10.1016/j.tecto.2017.11.010.

Royer, J.-Y., and T. Chang (1991), Evidence for Relative Motions Between the Indian and Australian Plates During the Last 20 m.y. From Plate Tectonic Reconstructions’ Implications for the Deformation of the Indo-Australian Plate, Journal of geophysical research, 96(B7), 11,779–11,802.

Seton, M., R. D. Müller, S. Zahirovic, C. Gaina, T. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. Maus, and M. Chandler (2012), Global continental and ocean basin reconstructions since 200Ma, Earth-Science Reviews, 113(3-4), 212–270, doi: 10.1016/j.earscirev.2012.03.002.

Seton, M., R. D. Müller, S. Zahirovic, S. Williams, N. M. Wright, J. Cannon, J. M. Whittaker, K. J. Matthews, and R. McGirr (2020), A Global Data Set of Present-Day Oceanic Crustal Age and Seafloor Spreading Parameters, Geochemistry, Geophysics, Geosystems, 21(10), doi: 10.1029/2020GC009214.

Torsvik, T. H., and L. R. M. Cocks (2016), Earth History and Palaeogeography, 1–332 pp., Cambridge University Press, doi: 10.1017/9781316225523.

Torsvik, T. H., S. Rousse, C. Labails, and M. A. Smethurst (2009), A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin, Geophysical Journal International, 177(3), 1315–1333, doi: 10.1111/j.1365- 246X.2009.04137.x.

Unidata (2021), Network Common Data Form (netCDF), doi: 10.5065/D6H70CW6.

van de Lagemaat, S. H. A., M. L. A. Swart, B. Vaes, M. E. Kosters, L. M. Boschman, A. Burton-Johnson, P. K. Bijl, W. Spakman, and D. J. J. van Hinsbergen (2021), Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?, Earth-Science Reviews, 215, 103,551, doi: 10.1016/j.earscirev.2021.103551.

van Hinsbergen, D. J. J., and T. L. A. Schouten (2021), Deciphering paleogeography from orogenic architecture: Constructing orogens in a future supercontinent as thought experiment, American journal of science, 321(6), 955–1031, doi: 10.2475/06.2021.09.

van Hinsbergen, D. J. J., T. H. Torsvik, S. M. Schmid, L. C. Maţenco, M. Maffione, R. L. M. Vissers, D. Gürer, and W. Spakman (2020), Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Research, 81, 79–229, doi: 10.1016/j.gr.2019.07.009.

Van Rossum, G., and F. L. Drake (2011), The python language reference manual, Network Theory Ltd.

Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe (2013), Generic Mapping Tools: Improved Version Released, Eos, Transactions, American Geophysical Union, 94(45), 409–410, doi: 10.1002/2013EO450001.

Williams, S., N. M. Wright, J. Cannon, N. Flament, and R. D. Müller (2021), Reconstructing seafloor age distributions in lost ocean basins, Geoscience Frontiers, 12(2), 769–780, doi: 10.1016/j.gsf.2020.06.004.

Wilson, J. T. (1965), A new class of faults and their bearing on continental drift, Nature, 207(4995), 343–347, doi: 10.1038/207343a0.

Young, A., N. Flament, K. Maloney, S. Williams, K. Matthews, S. Zahirovic, and R. D. Müller (2018), Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era, Geoscience Frontiers, 10(3), 989–1013, doi: 10.1016/j.gsf.2018.05.011.