Constraining the 3-D Geometry of Fold-Thrust Belts Using Section Balancing vs. 3-D Interpolative Structural and Probabilistic Modeling

Main Article Content

Kevin Frings
Christoph von Hagke
Florian Wellmann
Elisa Heim
Miguel de la Varga
Hugo Ortner
Elco Luijendijk


Quantitative uncertainty analysis, 2-D and 3-D modeling of the subsurface, as well as their visualization form the basis for decision making in exploration, nuclear waste storage and seismic hazard assessment. Methods such as cross-section balancing are well established and yield plausible kinematic scenarios. However, they are based on geological data with errors and subject to human biases. Additionally, kinematic models do not provide a quantitative measure of the uncertainty of structures at depth. New 3-D modeling approaches have emerged that use computational interpolation, which are less dependent on human biases. Probabilistic extensions enable the quantification of uncertainties for the modeled structures. However, these approaches do not provide information on the time evolution of structures. Here, we compare classical cross-section balancing (2-D, kinematic modeling) with 3-D computational modeling to pave the way towards a solution that can bridge between these approaches. We show the strengths and weaknesses of both approaches, highlighting areas where probabilistic modeling can possibly add quantitative structural uncertainty information to improve section balancing. On the other hand, we show where probabilistic modeling still falls short of being able to cover the observed geometric complexities. We ultimately discuss how a workflow that iteratively combines results of the approaches can improve structural and kinematic constraints. As an example, we use the fold-and-thrust belt of the northern Alpine Foreland, the so-called Subalpine Molasse, focusing on the Hausham Syncline (Bavaria) and adjacent areas. We take advantage of the fact that here the stratigraphy as well as the tectonic history are well constrained. We show that shortening within the syncline progressively increases from west to east, independent from structural uncertainties. Two equally viable models can explain this. First, strain in the west is accommodated underneath the syncline in a triangle zone that progressively tapers out, or second, the strain difference is accommodated in more internal units. This highlights the importance of introducing uncertainty modeling also in kinematic restorations, as it enables identifying key regions, where different hypotheses can be tested.

Article Details



Ailleres, L., M. Jessell, E. de Kemp, G. Caumon, F. Wellmann, L. Grose, R. Armit, M. Lindsay, J. Giraud, B. Brodaric, M. Harrison, and G. Courrioux (2019), Loop - enabling 3D stochastic geological modelling, in ASEG Extended Abstracts, pp. 1–3, Taylor & Francis, doi: 10.1080/22020586.2019.12072955.

Berge, T. B., and S. L. Veal (2005), Structure of the alpine foreland, Tectonics, 24(5), TC5011, doi: 10.1029/2003TC001588. Bjorge, M., P. Kreye, E. Heim, F. Wellmann, and W. Rühaak (2022), The role of geological models and uncertainties in safety assessments, Environmental Earth Sciences, 81(7), 190, doi: 10.1007/s12665-022-10305-z.

Bond, C. E., A. D. Gibbs, Z. K. Shipton, and S. Jones (2007), What do you think this is? “conceptual uncertainty” in geoscience interpretation, GSA today: a publication of the Geological Society of America, 17(11), 4, doi: 10.1130/gsat01711a.1.

Boyer, S. E., and D. Elliott (1982), Thrust systems, AAPG bulletin, 66, doi: 10.1306/03b5a77d-16d1-11d7-8645000102c1865d.

Brisson, S., F. Wellmann, N. Chudalla, J. von Harten, and C. von Hagke (2023), Estimating uncertainties in 3-D models of complex fold-and-thrust belts: A case study of the eastern alps triangle zone, Applied Computing and Geosciences, 18, 100,115, doi: 10.1016/j.acags.2023.100115.

Burberry, C. M. (2015), Spatial and temporal variation in penetrative strain during compression: Insights from analog models, Lithosphere, 7(6), 611–624, doi: 10.1130/L454.1.

Burkhard, M., and A. Sommaruga (1998), Evolution of the western swiss molasse basin: structural relations with the alps and the jura belt, Geological Society, London, Special Publications, 134(1), 279–298, doi: 10.1144/GSL.SP.1998.134.01.13.

Butler, R. W. H., C. E. Bond, M. A. Cooper, and H. Watkins (2018), Interpreting structural geometry in fold-thrust belts: Why style matters, Journal of Structural Geology, 114, 251–273, doi: 10.1016/j.jsg.2018.06.019.

Courrioux, G., B. Bourgine, A. Guillen, C. Allanic, T. Baudin, F. Lacquement, S. Gabalda, F. Cagnard, B. le Bayon, J. Besse, D. Marquer, P. Trap, P. H. Leloup, and D. Schreiber (2015), Comparisons from multiple realizations of a geological model: implication for uncertainty factors identification, in 17th Annual Conference of the International Association for Mathematical Geosciences–IAMG 2015, pp. 59–66.

Coward, M. P., and R. W. H. Butler (1985), Thrust tectonics and the deep structure of the Pakistan Himalaya, Geology, 13(6), 417–420, doi: 10.1130/0091-7613(1985)13<417:TTATDS>2.0.CO;2.

Dahlstrom, C. D. A. (1969), Balanced cross sections, Canadian journal of earth sciences, 6(4), 743–757, doi: 10.1139/e69-069. de la Varga, M., and J. F. Wellmann (2016), Structural geologic modeling as an inference problem: A bayesian perspective, Interpretation, 4(3), SM1–SM16, doi: 10.1190/int-2015-0188.1.

de la Varga, M., A. Schaaf, and F. Wellmann (2019), GemPy 1.0: open-source stochastic geological modeling and inversion, Geoscientific model development, 12(1), 1–32, doi: 10.5194/gmd-12-1-2019.

Freudenberger, W., and K. Schwerd (1996), Geologische Karte von Bayern, 1:500 000, 4 ed., Bayrisches Geologisches Landesamt, München.

Frisch, W. (1979), Tectonic progradation and plate tectonic evolution of the alps, Tectonophysics, 60(3-4), 121–139, doi: 10.1016/0040-1951(79)90155-0.

Ganss, O., and P. Schmidt-Thomé (1953), Querprofilserie durch die subalpine molassezone zwischen bodensee und salzach, Zeitschr. d. dt. Geol. Ges., 105.

Ganss, O., and P. Schmidt-Thomé (1955), Die gefaltete molasse am alpenrand zwischen bodensee und salzach, Zeitschr. d. dt. Geol. Ges., 105, 402–495.

Gibbs, A. D. (1983), Balanced cross-section construction from seismic sections in areas of extensional tectonics, Journal of Structural Geology, 5(2), 153–160, doi: 10.1016/0191-8141(83)90040-8.

Groshong, R. H. (1975), Strain, fractures, and pressure solution in natural single-layer folds, GSA Bulletin, 86(10), 1363–1376, doi: 10.1130/0016-7606(1975)86<1363:SFAPSI>2.0.CO;2.

Hesse, R. (1982), Cretaceous-Palaeogene flysch zone of the east alps and carpathians: identification and plate-tectonic significance of ‘dormant’ and ‘active’ deep-sea trenches in the Alpine-Carpathian arc, Geological Society, London, Special Publications, 10(1), 471–494, doi: 10.1144/GSL.SP.1982.010.01.32.

Hillier, M., F. Wellmann, B. Brodaric, E. de Kemp, and E. Schetselaar (2021), Three-Dimensional structural geological modeling using graph neural networks, Mathematical geosciences, 53(8), 1725–1749, doi: 10.1007/s11004-021-09945-x.

Hillier, M. J., E. M. Schetselaar, E. A. de Kemp, and G. Perron (2014), Three-Dimensional modelling of geological surfaces using generalized interpolation with radial basis functions, Mathematical geosciences, 46(8), 931–953, doi: 10.1007/s11004-014-9540-3.

Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara (2008), Hole-filled seamless SRTM data V4.

Jessell, M. (2001), Three-dimensional geological modelling of potential-field data, Computers & geosciences, 27(4), 455–465, doi: 10.1016/S0098-3004(00)00142-4.

Jessell, M. W., L. Ailleres, and E. A. de Kemp (2010), Towards an integrated inversion of geoscientific data: What price of geology?, Tectonophysics, 490(3), 294–306, doi: 10.1016/j.tecto.2010.05.020.

Judge, P. A., and R. W. Allmendinger (2011), Assessing uncertainties in balanced cross sections, Journal of Structural Geology, 33(4), 458–467, doi: 10.1016/j.jsg.2011.01.006.

Kley, J., and C. R. Monaldi (1998), Tectonic shortening and crustal thickness in the central andes: How good is the correlation?, Geology, 26(8), 723–726, doi: 10.1130/0091-7613(1998)026<0723:TSACTI>2.3.CO;2.

Kuhlemann, J., and O. Kempf (2002), Post-Eocene evolution of the north alpine foreland basin and its response to alpine tectonics, Sedimentary geology, 152, 45–78.

Lajaunie, C., G. Courrioux, and L. Manuel (1997), Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation, Mathematical geology, 29(4), 571–584, doi: 10.1007/BF02775087.

Laurent, G., L. Ailleres, L. Grose, G. Caumon, M. Jessell, and R. Armit (2016), Implicit modeling of folds and overprinting deformation, Earth and planetary science letters, 456, 26–38, doi: 10.1016/j.epsl.2016.09.040.

Lindsay, M. W. Jessell, L. Ailleres, S. Perrouty, E. de Kemp, and P. G. Betts (2013), Geodiversity: Exploration of 3D geological model space, Tectonophysics, 594, 27–37, doi: 10.1016/j.tecto.2013.03.013.

Lindsay, M. D., L. Aillères, M. W. Jessell, E. A. de Kemp, and P. G. Betts (2012), Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the gippsland basin, southeastern australia, Tectonophysics, 546-547, 10–27, doi: 10.1016/j.tecto.2012.04.007.

Mallet, J.-L. (1992), Discrete smooth interpolation in geometric modelling, Computer-aided design and applications, 24(4), 178–191, doi: 10.1016/0010-4485(92)90054-E.

Mallet, J.-L. (2004), Space–Time mathematical framework for sedimentary geology, Mathematical geology, 36(1), 1–32, doi: 10.1023/B:MATG.0000016228.75495.7c.

Mayoraz, R., C. E. Mann, and A. Parriaux (1992), Three-dimensional modeling of complex geological structures: New development tools for creating 3-D volumes, in Computer Modeling of Geologic Surfaces and Volumes, vol. 96, edited by D. E. Hamilton and T. A. Jones, pp. 261–271, AAPG Special Volumes, doi:

Mock, S., C. von Hagke, F. Schlunegger, I. Dunkl, and M. Herwegh (2020), Long-wavelength late-miocene thrusting in the north alpine foreland: implications for late orogenic processes, Solid earth, 11(5), 1823–1847, doi: 10.5194/se-11-1823-2020.

Müller, M. (1975), Bohrung miesbach 1: Ergebnisse der ersten im rahmen des erdgastiefenaufschlußprogramms der bundesregierung mit offentlichen mitteln geförderten erdgastiefbohrung, Compendium, 75/76, 63–67.

Oncken, O., C. von Winterfeld, and U. Dittmar (1999), Accretion of a rifted passive margin: The late paleozoic rhenohercynian fold and thrust belt (middle european variscides), Tectonics, 18(1), 75–91, doi: 10.1029/98tc02763.

Oncken, O., D. Hindle, J. Kley, K. Elger, P. Victor, and K. Schemmann (2006), Deformation of the central andean upper plate system - facts, friction, and constraints for plateau models, in The Andes, edited by O. Oncken, G. Chong, P. Giese, H.-J. Götze, V. Ramos, M. Strecker, and P. Wigger, pp. 3–27, Springer, Berlin, Heidelberg.

Ortner, H., S. Aichholzer, M. Zerlauth, R. Pilser, and B. Fügenschuh (2015), Geometry, amount, and sequence of thrusting in the subalpine molasse of western austria and southern germany, european alps, Tectonics, 34(1), 1–30, doi: 10.1002/2014TC003550.

Ortner, H., C. Von Hagke, A. Sommaruga, S. Mock, J. Mosar, R. Hinsch, and A. Beidinger (2023), The northern deformation front of the european alps, in Geodynamics of the Alps - Collisional Processes, vol. 3, edited by C. L. Rosenberg and N. Bellahsen, pp. 241–312, ISTE-Wiley editions.

Ostheimer, S., and A. Schröder (2016), Geologische karte von bayern 1:25.000, 8235 bad tölz.

Pakyuz-Charrier, E., M. Lindsay, V. Ogarko, J. Giraud, and M. Jessell (2018), Monte carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization, Solid earth, 9(2), 385–402, doi: 10.5194/se-9-385-2018.

Paulus, B. (1963), Zur stratigraphie und fazies der oligozänen und miozänen molasse im südlichen oberbayern, Bulletin der Vereinigung Schweiz. Petroleum-Geologen und -Ingenieure, 30(78), 53–97, doi: 10.5169/SEALS-192671.

Paulus, B. (1981), A revision of the geological section of the tölz-1 wildcat, and evidence of the so far unknown kirchsee syncline at the northern edge of the folded molasse between the isar and mangfall rivers, Zeitschrift der Deutschen Geologischen Gesellschaft, 132(1), 253–276, doi: 10.1127/zdgg/132/1981/253.

Petex (2018), MOVE suite, structural geology modelling software.

Pfiffner, O. A. (1986), Evolution of the north alpine foreland basin in the central alps, in Foreland Basins, pp. 219–228, Blackwell Publishing Ltd., Oxford, UK, doi: 10.1002/9781444303810.ch11.

Pflaumann, U., and W. Stephan (1968), Geologische karte von bayern 1:25.000, 8237 miesbach.

Risch, H. (1993), Mikrobiostratigraphische untersuchung an spülproben der bohrung miesbach I, Geologica Bavarica, 97, 125–134.

Schaaf, A., and C. E. Bond (2019), Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodeling and machine learning, Solid earth, 10(4), 1049–1061, doi: 10.5194/se-10-1049-2019.

Schmidt-Thomé, P. (1949), Neuere kenntnisse über die kalkalpenzone und die alpenrandstrukturen in südbayern, Geologische Rundschau: Zeitschrift fur allgemeine Geologie, 37(1), 18–24, doi: 10.1007/bf01792492.

Schmitz, M. (1994), A balanced model of the southern central andes, Tectonics, 13(2), 484–492, doi: 10.1029/93TC02232.

Schneeberger, R., M. de La Varga, D. Egli, A. Berger, F. Kober, F. Wellmann, and M. Herwegh (2017), Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study, Solid earth, 8(5), 987–1002, doi: 10.5194/se-8-987-2017.

Shipilin, V., D. C. Tanner, H. von Hartmann, and I. Moeck (2020), Multiphase, decoupled faulting in the southern german molasse basin – evidence from 3-D seismic data, Solid earth, 11(6), 2097–2117, doi: 10.5194/se-11-2097-2020.

Sinclair, H. D. (1997a), Tectonostratigraphic model for underfilled peripheral foreland basins: An alpine perspective, GSA Bulletin, 109(3), 324–346.

Sinclair, H. D. (1997b), Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff, Geology, 25(12), 1123, doi: 10.1130/0091-7613(1997)025<1123:ftmtip>;2.

Stephan, W., and R. Hesse (1966), Geologische karte von bayern 1:25.000, 8236 tegernsee.

Stg (2016), Stratigraphic Table of Germany 2016, German Research Centre for Geosciences, Potsdam.

Suppe, J., and Y. L. Chang (1983), Kink method applied to structural interpretation of seismic sections, western taiwan, Petroleum Geology of Taiwan, 19, 29–49.

Thiele, S. T., M. W. Jessell, M. Lindsay, V. Ogarko, J. F. Wellmann, and E. Pakyuz-Charrier (2016), The topology of geology 1: Topological analysis, Journal of Structural Geology, 91, 27–38, doi: 10.1016/j.jsg.2016.08.009.

Thomas, R., K. Schwerd, K. Bram, and J. Fertig (2006), Shallow high-resolution seismics and reprocessing of industry profiles in southern bavaria: The molasse and the northern alpine front, Tectonophysics, 414(1), 87–96, doi: 10.1016/j.tecto.2005.10.025.

Tipper, J. C. (1992), Surface modeling for sedimentary basin simulation, in Computer Modeling of Geologic Surfaces and Volumes, vol. 96, edited by D. E. Hamilton and T. A. Jones, pp. 93–103, AAPG Special Volumes, doi: 10.1306/CA1564C8.

Turner, A. K. (2006), Challenges and trends for geological modelling and visualisation, Bulletin of Engineering Geology and the Environment, 65(2), 109–127, doi: 10.1007/s10064-005-0015-0.

von Hagke, C., and A. Malz (2018), Triangle zones – geometry, kinematics, mechanics, and the need for appreciation of uncertainties, Earth-Science Reviews, 177, 24–42, doi: 10.1016/j.earscirev.2017.11.003.

von Hagke, C., C. E. Cederbom, O. Oncken, D. F. Stöckli, M. K. Rahn, and F. Schlunegger (2012), Linking the northern alps with their foreland: The latest exhumation history resolved by low-temperature thermochronology, Tectonics, 31(5), TC5010, doi: 10.1029/2011TC003078.

von Hagke, C., O. Oncken, H. Ortner, C. E. Cederbom, and S. Aichholzer (2014), Late miocene to present deformation and erosion of the central alps — evidence for steady state mountain building from thermokinematic data, Tectonophysics, 632, 250–260, doi: 10.1016/j.tecto.2014.06.021.

Wellmann, F., and G. Caumon (2018), 3-D structural geological models: Concepts, methods, and uncertainties, in Advances in Geophysics, vol. 59, edited by C. Schmelzbach, pp. 1–121, Elsevier, London, doi: 10.1016/bs.agph.2018.09.001.

Wellmann, J. F., and K. Regenauer-Lieb (2012), Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526-529, 207–216, doi: 10.1016/j.tecto.2011.05.001.

Wellmann, J. F., F. G. Horowitz, E. Schill, and K. Regenauer-Lieb (2010), Towards incorporating uncertainty of structural data in 3D geological inversion, Tectonophysics, 490(3), 141–151, doi: 10.1016/j.tecto.2010.04.022.

Wellmann, J. F., M. Lindsay, J. Poh, and M. Jessell (2014), Validating 3-D structural models with geological knowledge for improved uncertainty evaluations, Energy Procedia, 59, 374–381, doi: 10.1016/j.egypro.2014.10.391.

Wellmann, J. F., M. de la Varga, R. E. Murdie, K. Gessner, and M. Jessell (2018), Uncertainty estimation for a geological model of the sandstone greenstone belt, western australia – insights from integrated geological and geophysical inversion in a bayesian inference framework, in Characterization of Ore-Forming Systems from Geological, Geochemical and Geophysical Studies, edited by K. Gessner, T. G. Blenkinsop, and P. Sorjonen-Ward, Special Publications, London, doi: 10.6084/M9.FIGSHARE.C.3899719.

Wilson, C. G., C. E. Bond, and T. F. Shipley (2019), How can geologic decision-making under uncertainty be improved?, Solid earth, 10(5), 1469–1488, doi: 10.5194/se-10-1469-2019.

Witte, J., and O. Oncken (2020), Uncertainty quantification in section-balancing using Pseudo-3D forward modeling – example of the malargüe anticline, argentina, Journal of Structural Geology, 141, 104,189, doi: 10.1016/j.jsg.2020.104189.

Wojtal, S. (1989), Measuring displacement gradients and strains in faulted rocks, Journal of Structural Geology, 11(6), 669–678, doi: 10.1016/0191-8141(89)90003-5.

Woodward, N. B., S. E. Boyer, and J. Suppe (1989), Balanced geological cross-sections, Short course in geology, 6, 132.