Brittle-ductile Coupling and Block Rotation During Rifting Revealed Through Digital Volume Correlation Analysis of a Crustal-scale Analogue Experiment
Main Article Content
Abstract
During rifting, blocks of upper brittle crust may rotate about a vertical axis above the ductile parts of the crust below, in particular in settings where two rift segments interact in a so-called rift-pass structure, with important implications for our understanding of rift system development. However, whether such block rotation is edge-driven (induced by deformation in the brittle crust itself), or by viscous flow in the underlying ductile crust, and what role kinematic coupling between material in the brittle and ductile crust plays remains unclear. In this study, we apply new digital volume correlation (DVC) analysis on a previously presented crustal-scale analogue model simulating the evolution of a rift-pass structure. The improvements to our new DVC workflow include data preprocessing, increased vector resolution, improved postprocessing, and deformation quantification using finite stretch and rotation tensors. This enhanced workflow allows us to quantify the kinematic coupling between the brittle and viscous model layers in much higher spatial resolution, and to determine previously unrecognized differences in deformation styles between the brittle and viscous layers. Our improved DVC analysis reveals new insights into the kinematic evolution of a rotating rift-pass block forming between two interacting rift segments. We document (1) the evolution of a rift-pass block in the brittle layer, (2) its effect on the underlying viscous model layer and, (3) the kinematic coupling between the two model layers. Laterally confined by two rift segments, the rift-pass block rotates about a vertical axis and exerts a drag force on the underlying viscous layer where rift-axis parallel viscous flow is stimulated. As a result, a brittle-ductile transitional zone forms that shows increased shear with spatial and temporal variations in the degree of kinematic brittle-viscous coupling. Our DVC analysis suggests that edge-driven rift-pass block rotation locally weakens kinematic coupling, resulting in rift-axis parallel flow in the lower crust. Hence, rotating blocks in the upper crust may induce considerable amount of lower-crustal material to flow out of a 2D plane, which must be considered when estimating crustal extension from rift-axis perpendicular cross-sections.
Article Details
References
Acocella, Faccenna, Funiciello, and Rossetti (1999), Sand-box modelling of basement-controlled transfer zones in extensional domains, Terra nova, 11(4), 149–156, doi: 10.1046/j.1365-3121.1999.00238.x.
Acocella, V. (2008), Transform faults or Overlapping Spreading Centers? Oceanic ridge interactions revealed by analogue models, Earth and planetary science letters, 265(3-4), 379–385, doi: 10.1016/j.epsl.2007.10.025.
Adam, J., J. L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. Lohrmann, S. Hoth, W. van der Zee, and J. Schmatz (2005), Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques, Journal of structural geology, 27(2), 283–301, doi: 10.1016/j.jsg.2004.08.008.
Adam, J., M. Klinkmüller, G. Schreurs, and B. Wieneke (2013), Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques, Journal of structural geology, 55, 127–149, doi: 10.1016/j.jsg.2013.07.011.
Allken, V., R. S. Huismans, and C. Thieulot (2011), Three-dimensional numerical modeling of upper crustal extensional systems, Journal of geophysical research, 116(B10), doi: 10.1029/2011jb008319.
Allken, V., R. S. Huismans, and C. Thieulot (2012), Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochemistry, geophysics, geosystems: G(3), 13(5), doi: 10.1029/2012gc004077.
Allmendinger, R. W., N. Cardozo, and D. M. Fisher (2011), Structural geology algorithms: Vectors and tensors, Cambridge University Press, Cambridge, England.
Amidror, I. (2002), Scattered data interpolation methods for electronic imaging systems: a survey, Journal of electronic imaging, 11(2), 157, doi: 10.1117/1.1455013.
Axen, G. J., J. Selverstone, T. Byrne, and J. M. Fletcher (1998), If the strong crust leads, will the weak crust follow, GSA today: a publication of the Geological Society of America, 8(12), 1–8.
Bosworth, W. (1985), Geometry of propagating continental rifts, Nature, 316(6029), 625–627, doi: 10.1038/316625a0.
Boutelier, D. (2016), TecPIV—A MATLAB-based application for PIV-analysis of experimental tectonics, Computers & geosciences, 89, 186–199, doi: 10.1016/j.cageo.2016.02.002.
Boutelier, D., C. Schrank, and K. Regenauer-Lieb (2019), 2-D finite displacements and strain from particle imaging velocimetry (PIV) analysis of tectonic analogue models with TecPIV, Solid earth, 10(4), 1123–1139, doi: 10.5194/se-10-1123-2019.
Broerse, T., N. Krstekanić, C. Kasbergen, and E. Willingshofer (2021), Mapping and classifying large deformation from digital imagery: application to analogue models of lithosphere deformation, Geophysical journal international, 226(2), 984–1017, doi: 10.1093/gji/ggab120.
Brun, J.-P. (1999), Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 357(1753), 695–712, doi: 10.1098/rsta.1999.0349.
Brune, S., G. Corti, and G. Ranalli (2017), Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression: Rift Linkage Modeling, Turkana Region, Tectonics, 36(9), 1767–1786, doi: 10.1002/2017tc004739.
Buck, W. R. (1991), Modes of continental lithospheric extension, Journal of geophysical research, 96(B12), 20,161–20,178, doi: 10.1029/91jb01485.
Buiter, S. J. H., R. S. Huismans, and C. Beaumont (2008), Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins, Journal of geophysical research, 113(B6), doi: 10.1029/2007JB005272.
Bürgmann, R., and G. Dresen (2008), Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annual review of earth and planetary sciences, 36(1), 531–567, doi: 10.1146/annurev.earth.36.031207.124326.
Chaipornkaew, L., H. Elston, M. Cooke, T. Mukerji, and S. A. Graham (2022), Predicting off-fault deformation from experimental strike-slip fault images using convolutional neural networks, Geophysical research letters, 49(2), e2021GL096,854, doi: 10.1029/2021gl096854.
Clift, P. (2015), Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea, Geoscience letters, 2(1), 1–11, doi: 10.1186/s40562-015-0029-9.
Collanega, L., C. A.-L. Jackson, R. E. Bell, A. J. Coleman, A. Lenhart, and A. Breda (2018), How do intra-basement fabrics influence normal fault growth? Insights from the Taranaki Basin, offshore New Zealand, EarthArXiv.
Colletta, B., J. Letouzey, R. Pinedo, J. F. Ballard, and P. Balé (1991), Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems, Geology, 19(11), 1063, doi: 10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2.
D’Errico, J. (2008), Inpainting nan elements in 3-d, MATLAB Central File Exchange.
Diebel, J. (2006), Representing attitude : Euler angles , unit quaternions , and rotation vectors, Matrix, 58(15-16), 1–35.
Dooley, T. P., M. P. A. Jackson, and M. R. Hudec (2009), Inflation and deflation of deeply buried salt stocks during lateral shortening, Journal of structural geology, 31(6), 582–600, doi: 10.1016/j.jsg.2009.03.013.
Fossen, H., R. Schultz, E. Rundhovde, A. Rotevatn, and S. Buckley (2010), Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation, AAPG Bulletin, 94(5), 597–613, doi: 10.1306/10130909088.
Gautier, P., E. Bozkurt, V. Bosse, E. Hallot, and K. Dirik (2008), Coeval extensional shearing and lateral underflow during Late Cretaceous core complex development in the Niğde Massif, Central Anatolia, Turkey: CORE COMPLEX IN CENTRAL ANATOLIA, Tectonics, 27(1), doi: 10.1029/2006tc002089.
Gawthorpe, R. L., and J. M. Hurst (1993), Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy, Journal of the Geological Society, 150(6), 1137–1152, doi: 10.1144/gsjgs.150.6.1137.
Giorgis, S., M. Markley, and B. Tikoff (2004), Vertical-axis rotation of rigid crustal blocks driven by mantle flow, Geological Society special publication, 227(1), 100–183, doi: 10.1144/GSL.SP.2004.227.01.05.
Glerum, A., S. Brune, D. S. Stamps, and M. R. Strecker (2020), Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift, Nature communications, 11(1), 2881, doi: 10.1038/s41467-020-16176-x.
Heilman, E., F. Kolawole, E. A. Atekwana, and M. Mayle (2019), Controls of basement fabric on the linkage of rift segments, Tectonics, 38(4), 1337–1366, doi: 10.1029/2018tc005362.
Hounsfield, G. (1973), Computerized transverse axial scanning (tomography): Part I. Description of system. 1973, The British journal of radiology, 68(815), H166–72, doi: 10.1259/0007-1285-46-552-1016.
Jackson, J., and P. Molnar (1990), Active faulting and block rotations in the Western Transverse Ranges, California, Journal of geophysical research, 95(B13), 22,073–22,087, doi: 10.1029/jb095ib13p22073.
Jackson, J., J. Haines, and W. Holt (1992), The horizontal velocity field in the deforming Aegean Sea region determined from the moment tensors of earthquakes, Journal of geophysical research, 97(B12), 17,657–17,684, doi: 10.1029/92jb01585.
Koehn, D., K. Aanyu, S. Haines, and T. Sachau (2008), Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts, Tectonophysics, 458(1-4), 105–116, doi: 10.1016/j.tecto.2007.10.003.
Kolawole, F., E. A. Atekwana, D. A. Laó-Dávila, M. G. Abdelsalam, P. R. Chindandali, J. Salima, and L. Kalindekafe (2018), Active deformation of Malawi rift’s North Basin hinge zone modulated by reactivation of preexisting Precambrian shear zone fabric, Tectonics, 37(3), 683–704, doi: 10.1002/2017tc004628.
Lachenbruch, A. H., and J. H. Sass (1992), Heat flow from Cajon Pass, fault strength, and tectonic implications, Journal of geophysical research, 97(B4), 4995–5015, doi: 10.1029/91jb01506.
Lamb, S. H. (1994), Behavior of the brittle crust in wide plate boundary zones, Journal of geophysical research, 99(B3), 4457–4483, doi: 10.1029/93jb02574.
Le Calvez, J. H., and B. C. Vendeville (2002), Physical modeling of normal faults and Graben relays above salt: A qualitative and quantitative analysis, Gulf Coast Association of Geological Societies Transactions, 52, 599–606.
Little, T. A., S. L. Baldwin, P. G. Fitzgerald, and B. Monteleone (2007), Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D’Entrecasteaux Islands, Papua New Guinea: METAMORPHIC CORE COMPLEX, WOODLARK RIFT, Tectonics, 26(1), doi: 10.1029/2005tc001911.
Little, T. A., B. R. Hacker, S. M. Gordon, S. L. Baldwin, P. G. Fitzgerald, S. Ellis, and M. Korchinski (2011), Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea, Tectonophysics, 510(1-2), 39–68, doi: 10.1016/j.tecto.2011.06.006.
Little, T. A., B. R. Hacker, S. J. Brownlee, and G. Seward (2013), Microstructures and quartz lattice-preferred orientations in the eclogite-bearing migmatitic gneisses of the D’Entrecasteaux Islands, Papua New Guinea: MICROSTRUCTURES, LPOS OF UHP ROCKS, PNG, Geochemistry, geophysics, geosystems: G(3), 14(6), 2030–2062, doi: 10.1002/ggge.20132.
MacCready, T., A. W. Snoke, J. E. Wright, and K. A. Howard (1997), Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada, Geological Society of America bulletin, 109(12), 1576–1594, doi: 10.1130/0016-7606(1997)109<1576:mcfdte>2.3.co;2.
Malvern, L. E. (1969), Introduction to the mechanics of a continuous medium, Prentice-Hall Series in Engineering of the Physical Sciences, Prentice Hall, Philadelphia, PA.
Mandl, G. (1988), Mechanics of tectonic faulting: Models and basic concepts, Elsevier Publishing Company.
Mareschal, J.-C., and C. Jaupart (2013), Radiogenic heat production, thermal regime and evolution of continental crust, Tectonophysics, 609, 524–534, doi: 10.1016/j.tecto.2012.12.001.
Martin, A. K. (1984), Propagating rifts: Crustal extension during continental rifting, Tectonics, 3(6), 611–617, doi: 10.1029/tc003i006p00611.
McKenzie, D., and J. Jackson (1983), The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements within a deforming zone, Earth and planetary science letters, 65(1), 182–202, doi: 10.1016/0012-821x(83)90198-x.
McKenzie, D., and J. Jackson (1986), A block model of distributed deformation by faulting, Journal of the Geological Society, 143(2), 349–353, doi: 10.1144/gsjgs.143.2.0349.
Morley, C., R. Nelson, T. L. Patton, and S. Munn (1990), Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts (1), AAPG Bulletin, 74(8), 1234–1253, doi: 10.1306/0C9B2475-1710-11D7-8645000102C1865D.
Nelson, R., T. L. Patton, and C. Morley (1992), Rift-segment interaction and its relation to hydrocarbon exploration in continental rift systems (1), AAPG Bulletin, 76(8), 1153–1169, doi: 10.1306/BDFF898E-1718-11D7-8645000102C1865D.
Oldenburg, D. W., and J. N. Brune (1975), An explanation for the orthogonality of ocean ridges and transform faults, Journal of geophysical research, 80(17), 2575–2585, doi: 10.1029/jb080i017p02575.
Panien, M., S. Buiter, G. Schreurs, and O. Pfiffner (2006), Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments, Geological Society special publication, 253(1), 253–270, doi: 10.1144/GSL.SP.2006.253.01.13.
Paul, D., and S. Mitra (2012), Experimental models of transfer zones in rift systems, AAPG Bulletin, 97(5), 759–780, doi: 10.1306/10161212105.
Pollard, D. D., and A. Aydin (1984), Propagation and linkage of oceanic ridge segments, Journal of geophysical research, 89(B12), 10,017–10,028, doi: 10.1029/jb089ib12p10017.
Poppe, S., E. P. Holohan, O. Galland, N. Buls, G. Van Gompel, B. Keelson, P.-Y. Tournigand, J. Brancart, D. Hollis, A. Nila, and M. Kervyn (2019), An inside perspective on magma intrusion: Quantifying 3D displacement and strain in laboratory experiments by dynamic X-ray computed tomography, Frontiers in earth science, 7, 62, doi: 10.3389/feart.2019.00062.
Raffel, M., C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans (2018), Post-processing of PIV Data, in Particle Image Velocimetry, pp. 243–283, Springer International Publishing, Cham, doi: 10.1007/978-3-319-68852-7_7.
Rosendahl, B. (1987), Architecture of continental rifts with special reference to east Africa, Annual review of earth and planetary sciences, 15(1), 445–503, doi: 10.1146/annurev.earth.15.1.445.
Schellart, W. P., M. W. Jessell, and G. S. Lister (2003), Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: New insights from analogue modeling: ASYMMETRIC BACKARC DEFORMATION BEHIND THE KURIL ARC, Tectonics, 22(5), doi: 10.1029/2002tc001473.
Schmid, T., G. Schreurs, and J. Adam (2022), Rotational extension promotes coeval upper crustal brittle faulting and deep-seated rift-axis parallel flow: Dynamic coupling processes inferred from analog model experiments, Journal of Geophysical Research, [Solid Earth], 127, e2022JB024,434, doi: 10.1029/2022JB024434.
Schmid, T. C., J. Adam, F. Zwaan, G. Schreurs, D. Hollis, and M. Rosenau (2024), Digital Volume Correlation (DVC) data from an analogue experiment exploring kinematic coupling of brittle and viscous deformation, GFZ Data Services, doi: 10.5880/fidgeo.2024.028.
Schouten, H., K. D. Klitgord, and D. G. Gallo (1993), Edge-driven microplate kinematics, Journal of geophysical research, 98(B4), 6689–6701, doi: 10.1029/92jb02749.
Schreurs, G., and B. Colletta (1998), Analogue modelling of faulting in zones of continental transpression and transtension, Geological Society special publication, 135(1), 59–79, doi: 10.1144/GSL.SP.1998.135.01.05.
Schreurs, G., R. Hänni, and P. Vock (2002), Analogue modelling of transfer zones in fold-and-thrust belts: a 4-D analysis, Journal of the virtual explorer, 07, 67–73, doi: 10.3809/jvirtex.2002.00047.
Schreurs, G., R. Hänni, M. Panien, and P. Vock (2003), Analysis of analogue models by helical X-ray computed tomography, Geological Society special publication, 215(1), 213–223, doi: 10.1144/GSL.SP.2003.215.01.20.
Schueller, S., F. Gueydan, and P. Davy (2010), Mechanics of the transition from localized to distributed fracturing in layered brittle–ductile systems, Tectonophysics, 484(1-4), 48–59, doi: 10.1016/j.tecto.2009.09.008.
Tentler, T., and V. Acocella (2010), How does the initial configuration of oceanic ridge segments affect their interaction? Insights from analogue models, Journal of geophysical research, 115(B1), doi: 10.1029/2008jb006269.
Thatcher, W. (1995), Microplate versus continuum descriptions of active tectonic deformation, Journal of geophysical research, 100(B3), 3885–3894, doi: 10.1029/94jb03064.
Thielicke, W. (2014), The flapping flight of birds: Analysis and application, Ph.D. thesis, University of Groningen, The Netherlands.
Thielicke, W., and E. Stamhuis (2014), PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB, Journal of open research software, 2(1), 30, doi: 10.5334/JORS.BL.
Tikoff, B., C. Teyssier, and C. Waters (2002), Clutch tectonics and the partial attachment of lithospheric layers, Stephan Mueller special publication series, 1, 57–73, doi: 10.5194/smsps-1-57-2002.
Tikoff, B., R. Russo, C. Teyssier, and A. Tommasi (2004), Mantle-driven deformation of orogenic zones and clutch tectonics, Geological Society special publication, 227(1), 41–64, doi: 10.1144/GSL.SP.2004.227.01.03.
Toeneboehn, K., M. L. Cooke, S. P. Bemis, A. M. Fendick, and J. Benowitz (2018), Stereovision combined with particle tracking velocimetry reveals advection and uplift within a restraining bend simulating the Denali fault, Frontiers in earth science, 6, 152, doi: 10.3389/feart.2018.00152.
Westerweel, J., and F. Scarano (2005), Universal outlier detection for PIV data, Experiments in fluids, 39(6), 1096–1100, doi: 10.1007/s00348-005-0016-6.
Wieneke, B. (2015), PIV uncertainty quantification from correlation statistics, Measurement Science and Technology, 26(7), 074,002, doi: 10.1088/0957-0233/26/7/074002.
Wieneke, B. (2017), PIV Uncertainty Quantification and Beyond, Ph.D. thesis, TU Delft, The Netherlands, doi: 10.4233/UUID:4CA8C0B8-0835-47C3-8523-12FC356768F3.
Zwaan, F., and G. Schreurs (2017), How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models, Interpretation, 5(1), SD119–SD138, doi: 10.1190/int-2016-0063.1.
Zwaan, F., and G. Schreurs (2020), Rift segment interaction in orthogonal and rotational extension experiments: Implications for the large-scale development of rift systems, Journal of structural geology, 140(104119), 104,119, doi: 10.1016/j.jsg.2020.104119.
Zwaan, F., and G. Schreurs (2023), The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study, Solid earth, 14(8), 823–845, doi: 10.5194/se-14-823-2023.
Zwaan, F., G. Schreurs, J. Naliboff, and S. J. H. Buiter (2016), Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models, Tectonophysics, 693, 239–260, doi: 10.1016/j.tecto.2016.02.036.
Zwaan, F., G. Schreurs, and J. Adam (2018), Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques, Global and planetary change, 171, 110–133, doi: 10.1016/j.gloplacha.2017.11.002.
Zwaan, F., G. Schreurs, and S. J. H. Buiter (2019), A systematic comparison of experimental set-ups for modelling extensional tectonics, Solid earth, 10(4), 1063–1097, doi: 10.5194/se-10-1063-2019.
Zwaan, F., G. Schreurs, and M. Rosenau (2020), Rift propagation in rotational versus orthogonal extension: Insights from 4D analogue models, Journal of structural geology, 135(103946), 103,946, doi: 10.1016/j.jsg.2019.103946.