Quantifying Dyke-Induced Graben and Dyke Structure Using 3D Seismic Reflection Data and The Role of Interpretation Bias

Main Article Content

Craig Magee
Victoria Love
Karima Fayez
Billy Andrews
Samuel Rivas-Dorado
Christopher Jackson
Claire Orlov
Emma Bramham

Abstract

During dyke intrusion, tensile stresses concentrated within the overlying rock may lead to the formation of normal faults. These faults typically form graben-bounding pairs that are sub-parallel to, and dip toward, the upper tip of their underlying dyke. Many studies use geometric properties extracted from the surface expression of such dyke-induced faults to estimate the geometry of subsurface dykes. These methods assume dyke-induced faults are planar and nucleate at the surface. However, recent seismic reflection-based investigations of the 3D structure of dyke-induced faults confirm they can be non-planar and have complex growth histories. Here, we use 3D seismic reflection surveys from offshore NW Australia to: (1) examine how the surface expression of dyke-induced faults relates to subsurface dyke geometry and depth; and (2) test whether subjective bias may influence the quantitative analyses of dyke-induced faults using seismic reflection data. We show displacement and dip vary across dyke-induced faults, supporting previous suggestions that faults nucleate between dyke upper tips and the free surface. We also find that prediction of dyke upper tip depths using graben width and area of loss methods are sensitive to fault dip variations and interpretation biases, but often still produce similar results to measured dyke depths. Both measured and predicted dyke depths vary by several hundred metres along-strike, which we relate to the preservation of dyke heads, segmentation, and/or magma density changes. Overall, we show reflection seismology provides a better understanding of the 3D structure of dyke-induced faults and their relationship to the geometry and emplacement dynamics of their causal dykes.

Article Details

How to Cite
Magee, C., Love, V., Fayez, K., Andrews, B., Rivas-Dorado, S., Jackson, C., Orlov, C., & Bramham, E. (2023). Quantifying Dyke-Induced Graben and Dyke Structure Using 3D Seismic Reflection Data and The Role of Interpretation Bias. τeκτoniκa, 1(2), 32–53. https://doi.org/10.55575/tektonika2023.1.2.25
Section
Articles

References

Ágústsdóttir, T., J. Woods, T. Greenfield, R. G. Green, R. S. White, T. Winder, B. Brandsdóttir, S. Steinthórsson, and H. Soosalu (2016), Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central iceland, Geophysical research letters, 43(4), 1495–1503, doi: 10.1002/2015gl067423.

Al Shehri, A., and A. Gudmundsson (2018), Modelling of surface stresses and fracturing during dyke emplacement: Application to the 2009 episode at harrat lunayyir, saudi arabia, Journal of Volcanology and Geothermal Research, 356, 278–303, doi: 10.1016/j.jvolgeores.2018.03.011.

Alcalde, J., and C. E. Bond (2022), Chapter 5 - subjective uncertainty and biases: The impact on seismic data interpretation, in Interpreting Subsurface Seismic Data, edited by R. Bell, D. Iacopini, and M. Vardy, pp. 103–123, Elsevier, doi: 10.1016/B978- 0-12-818562-9.00002-9.

Alcalde, J., C. E. Bond, G. Johnson, J. F. Ellis, and R. W. H. Butler (2017a), Impact of seismic image quality on fault interpretation uncertainty, GSA today: a publication of the Geological Society of America, doi: 10.1130/gsatg282a.1.

Alcalde, J., C. E. Bond, and C. H. Randle (2017b), Framing bias: The effect of figure presentation on seismic interpretation,

Interpretation, 5(4), T591–T605, doi: 10.1190/int-2017-0083.1.

Alcalde, J., C. E. Bond, G. Johnson, A. Kloppenburg, O. Ferrer, R. Bell, and P. Ayarza (2019), Fault interpretation in seismic reflection data: an experiment analysing the impact of conceptual model anchoring and vertical exaggeration, Solid earth, 10(5), 1651–1662, doi: 10.5194/se-10-1651-2019.

Allen, P. A., and J. R. Allen (2013), Basin Analysis: Principles and Application to Petroleum Play Assessment, John Wiley & Sons. Anderson, E. M. (1951), The dynamics of faulting and dyke formation with applications to Britain, 206 pp., Hafner Pub. Co., Edinburgh.

Andrews, B. J., J. J. Roberts, Z. K. Shipton, S. Bigi, M. C. Tartarello, and G. O. Johnson (2019), How do we see fractures? quantifying subjective bias in fracture data collection, Solid earth discussions, 10(2), 1–44, doi: 10.5194/se-2018-135.

Bilal, A., and K. McClay (2022), Tectonic and stratigraphic evolution of the central exmouth plateau, NW shelf of australia, Marine and Petroleum Geology, 136(105447), 105,447, doi: 10.1016/j.marpetgeo.2021.105447.

Bilal, A., K. McClay, and N. Scarselli (2018), Fault-scarp degradation in the central exmouth plateau, north west shelf, australia, Geological Society special publication, 476, SP476. 11.

Black, M., K. D. McCormack, C. Elders, and D. Robertson (2017), Extensional fault evolution within the exmouth sub-basin, north west shelf, australia, Marine and Petroleum Geology, 85, 301–315, doi: 10.1016/j.marpetgeo.2017.05.022.

Bond, C. E., A. D. Gibbs, Z. K. Shipton, and S. Jones (2007), What do you think this is ”conceptual uncertainty” in geoscience interpretation, GSA today: a publication of the Geological Society of America, 17(11), 4–10.

Bond, C. E., G. Johnson, and J. F. Ellis (2015), Structural model creation: the impact of data type and creative space on geological reasoning and interpretation, Geological Society special publication, 421(1), 83–97.

Bosworth, W., D. F. Stockli, and D. E. Helgeson (2015), Integrated outcrop, 3D seismic, and geochronologic interpretation of red sea dike-related deformation in the western desert, Egypt–The role of the 23ma cairo “mini-plume”, Journal of African Earth Sciences, 109, 107–119.

Brown, A. R. (2011), Interpretation of three-dimensional seismic data, AAPG Memoir 42, SEG Investigations in Geophysics No. 9, vol. 42, 6th ed., 534 pp., American Association of Petroleum Geologists, Oklahoma, USA, doi: 10.1306/m4271346.

Delogkos, E., T. Manzocchi, C. Childs, C. Sachanidis, T. Barbas, M. P. J. Schöpfer, A. Chatzipetros, S. Pavlides, and J. J. Walsh (2017), Throw partitioning across normal fault zones in the ptolemais basin, greece, Geological Society special publication, 439(1), 333–353.

Dimmen, V., A. Rotevatn, and I. Lecomte (2023), Imaging of small-scale faults in seismic reflection data: Insights from seismic modelling of faults in outcrop, Marine and Petroleum Geology, 147(105980), 105,980, doi: 10.1016/j.marpetgeo.2022.105980.

Direen, N. G., H. M. J. Stagg, P. A. Symonds, and J. B. Colwell (2008), Architecture of volcanic rifted margins: new insights from the exmouth – gascoyne margin, western australia, Australian Journal of Earth Sciences, 55(3), 341–363, doi: 10.1080/08120090701769472.

Drymoni, K., E. Russo, A. Tibaldi, N. Corti, F. L. Bonali, and F. P. Mariotto (2023), Dyke-induced graben formation in a heterogeneous succession on mt. etna: Insights from field observations and FEM numerical models, Journal of Volcanology and Geothermal Research, 433(107712), 107,712, doi: 10.1016/j.jvolgeores.2022.107712.

Dumont, S., A. Socquet, R. Grandin, C. Doubre, and Y. Klinger (2015), Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (afar, ethiopia), Geophysical Journal International, 204(1), 399–417, doi: 10.1093/gji/ggv449.

Dumont, S., Y. Klinger, A. Socquet, C. Doubre, and E. Jacques (2017), Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (afar, ethiopia), Journal of Structural Geology, 95, 48–59, doi: 10.1016/j.jsg.2016.12.008.

Exon, N. F., B. U. Haq, and U. Von Rad (1992), Exmouth plateau revisited: scientific drilling and geological framework, in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 122, pp. 3–20.

Faleide, T. S., A. Braathen, I. Lecomte, M. J. Mulrooney, I. Midtkandal, A. J. Bugge, and S. Planke (2021), Impacts of seismic resolution on fault interpretation: Insights from seismic modelling, Tectonophysics, 816(229008), 229,008, doi: 10.1016/j.tecto.2021.229008.

Gartrell, A., J. Torres, M. Dixon, and M. Keep (2016), Mesozoic rift onset and its impact on the sequence stratigraphic architecture of the northern carnarvon basin, The APPEA journal, 56(1), 143, doi: 10.1071/aj15012.

Gibson, H., I. S. Stewart, S. Pahl, and A. Stokes (2016), A “mental models” approach to the communication of subsurface hydrology and hazards, Hydrology and Earth System Sciences, 20(5), 1737–1749, doi: 10.5194/hess-20-1737-2016.

Hardy, S. (2016), Does shallow dike intrusion and widening remain a possible mechanism for graben formation on mars?, Geology, 44(2), 107–110, doi: 10.1130/g37285.1.

Healy, D., R. E. Rizzo, M. Duffy, N. J. C. Farrell, M. J. Hole, and D. Muirhead (2018), Field evidence for the lateral emplacement of igneous dykes: Implications for 3D mechanical models and the plumbing beneath fissure eruptions, Volcanica, 1(2), 85–105, doi: 10.30909/vol.01.02.85105.

Hjartardóttir, Á. R., P. Einarsson, M. T. Gudmundsson, and T. Högnadóttir (2016), Fracture movements and graben subsidence during the 2014 bárðarbunga dike intrusion in iceland, Journal of Volcanology and Geothermal Research, 310, 242–252, doi: 10.1016/j.jvolgeores.2015.12.002.

Hocking, R. M., W. J. E. Van de Graaff, H. T. Moors, and G. S. of Western Australia. (1987), Geology of the Carnarvon Basin, Western Australia / by R.M. Hocking, H.T. Moors and W.J.E. Van de Graaff, xiv, 288, [1] p. : pp., Geological Survey of Western Australia Perth, W.A.

Hofmann, B. (2013), How do faults grow in magmatic rifts? LiDAR and InSAR observations of the Dabbahu rift segment, Afar, Ethiopia, University of Leeds.

Karner, G. D., and N. W. Driscoll (1999), Style, timing and distribution of tectonic deformation across the exmouth plateau, northwest australia, determined from stratal architecture and quantitative basin modelling, in Continental Tectonics. Geological Society, London, Special Publications, vol. 164, edited by C. MacNiocall and P. D. Ryan, pp. 271–311, Geological Society of London.

Koehn, D., A. Steiner, and K. Aanyu (2019), Modelling of extension and dyking-induced collapse faults and fissures in rifts, Journal of Structural Geology, 118, 21–31, doi: 10.1016/j.jsg.2018.09.017.

Longley, I. M., C. Buessenschuett, L. Clydsdale, C. J. Cubitt, R. C. Davis, M. K. Johnson, N. M. Marshall, A. P. Murray, R. Somerville, T. B. Spry, and Others (2002), The north west shelf of australia–a woodside perspective, in The sedimentary basins of Western Australia 3, vol. 3, edited by M. Keep and S. J. Moss, pp. 27–88, Petroleum Exploration Society of Australia, Perth.

Macrae, E. J., C. E. Bond, Z. K. Shipton, and R. J. Lunn (2016), Increasing the quality of seismic interpretation, Interpretation-a Journal of Subsurface Characterization, 4(3), T395–T402, doi: 10.1190/INT-2015-0218.1.

Magee, C., and C. A.-L. Jackson (2020), Seismic reflection data reveal the 3D structure of the newly discovered exmouth dyke swarm, offshore NW australia, Solid earth, 11(2), 579–606, doi: 10.5194/se-11-579-2020.

Magee, C., and C. A.-L. Jackson (2021), Can we relate the surface expression of dike-induced normal faults to subsurface dike geometry?, Geology, 49(4), 366–371, doi: 10.1130/G48171.1.

Magee, C., and V. Love (2021), Dyke-induced fault measurements and predicted dyke properties offshore NW australia, doi: 10.5285/f8c2c92a-450d-49e7-bfac-9317d2828e33.

Magee, C., O. B. Duffy, K. Purnell, R. E. Bell, C. A.-L. Jackson, and M. T. Reeve (2016), Fault-controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data, offshore NW australia, Basin Research, 28(3), 299–318, doi: 10.1111/bre.12111.

Magee, C., C. Kling, P. Byrne, and C. A-L Jackson (2022), Seismic reflection data reveal the 3D subsurface structure of pit craters, Journal of geophysical research. Planets, 127(8), e2021JE007,155, doi: 10.1029/2021je007155.

Mansfield, C. S., and J. A. Cartwright (1996), High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth, Journal of Structural Geology, 18(2-3), 249–263, doi: 10.1016/s0191- 8141(96)80048-4.

Martin, J., A. M. Fernandes, J. Pickering, N. Howes, S. Mann, and K. McNeil (2018), The stratigraphically preserved signature of persistent backwater dynamics in a large paleodelta system: The mungaroo formation, north west shelf, australia, Journal of Sedimentary Research, 88(7), 850–872, doi: 10.2110/jsr.2018.38.

Mastin, L. G., and D. D. Pollard (1988), Surface deformation and shallow dike intrusion processes at inyo craters, long valley, california, Journal of geophysical research, 93(B11), 13,221–13,235, doi: 10.1029/jb093ib11p13221.

Norcliffe, J., C. Magee, C. Jackson, J. Kopping, and B. Lathrop (2021), Fault inversion contributes to ground deformation above inflating igneous sills, Volcanica, 4(1), 1–21, doi: 10.30909/vol.04.01.0121.

Pansino, S., A. Emadzadeh, and B. Taisne (2019), Dike channelization and solidification: Time scale controls on the geometry and placement of magma migration pathways, Journal of Geophysical Research, [Solid Earth], 124(9), 9580–9599, doi: 10.1029/2019jb018191.

Paumard, V., J. Bourget, T. Payenberg, R. B. Ainsworth, A. D. George, S. Lang, H. W. Posamentier, and D. Peyrot (2018), Controls on shelf-margin architecture and sediment partitioning during a syn-rift to post-rift transition: Insights from the barrow group (northern carnarvon basin, north west shelf, australia), Earth-Science Reviews, 177, 643–677, doi: 10.1016/j.earscirev.2017.11.026.

Perrin, C., A. Jacob, A. Lucas, R. Myhill, E. Hauber, A. Batov, T. Gudkova, S. Rodriguez, P. Lognonné, J. Stevanović, M. Drilleau, and N. Fuji (2022), Geometry and segmentation of cerberus fossae, mars: Implications for marsquake properties, Journal of geophysical research. Planets, 127(1), e2021JE007,118, doi: 10.1029/2021JE007118.

Poland, M. P., W. P. Moats, and J. H. Fink (2008), A model for radial dike emplacement in composite cones based on observations from summer coon volcano, colorado, USA, Bulletin of Volcanology, 70(7), 861–875, doi: 10.1007/s00445- 007-0175-9.

Pollard, D. D., and P. Segall (1987), Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, in Fracture mechanics of rock, edited by B. K. Atkinson, pp. 277–347, Academic Press, London.

Pollard, D. D., and M. R. Townsend (2018), Fluid-filled fractures in earth’s lithosphere: Gravitational loading, interpenetration, and stable height of dikes and veins, Journal of Structural Geology, 109, 38–54, doi: 10.1016/j.jsg.2017.11.007.

Pollard, D. D., P. T. Delaney, W. A. Duffield, E. T. Endo, and A. T. Okamura (1983), Surface deformation in volcanic rift zones,

Tectonophysics, 94(1-4), 541–584, doi: 10.1016/0040-1951(83)90034-3.

Pryer, L. L., K. K. Romine, T. S. Loutit, and R. G. Barnes (2002), Carnarvon basin architecture and structure defined by the integration of mineral and petroleum exploration tools and techniques, The APPEA journal, 42(1), 287, doi: 10.1071/aj01016.

Rankey, E. C., and J. C. Mitchell (2003), That’s why it’s called interpretation: Impact of horizon uncertainty on seismic attribute analysis, Leading Edge, 22(9), 820–828, doi: 10.1190/1.1614152.

Reeve, M. T., C. A.-L. Jackson, R. E. Bell, C. Magee, and I. D. Bastow (2016), The stratigraphic record of prebreakup geodynamics: Evidence from the barrow delta, offshore northwest australia, Tectonics, 35(8), 1935–1968, doi: 10.1002/2016tc004172.

Reeve, M. T., C. Magee, I. D. Bastow, C. McDermott, C. A.-L. Jackson, R. E. Bell, and J. Prytulak (2021), Nature of the cuvier abyssal plain crust, offshore NW australia, Journal of the Geological Society, 178(5), doi: 10.1144/jgs2020-172.

Rivalta, E., B. Taisne, A. P. Bunger, and R. F. Katz (2015), A review of mechanical models of dike propagation: Schools of thought, results and future directions, Tectonophysics, 638, 1–42, doi: 10.1016/j.tecto.2014.10.003.

Rivas-Dorado, S., J. Ruiz, and I. Romeo (2021), Subsurface geometry and emplacement conditions of a giant dike system in elysium fossae, mars, Journal of geophysical research. Planets, 126(1), e2020JE006,512, doi: 10.1029/2020je006512.

Robb, M. S., B. Taylor, and A. M. Goodliffe (2005), Re-examination of the magnetic lineations of the gascoyne and cuvier abyssal plains, off NW australia, Geophysical Journal International, 163(1), 42–55, doi: 10.1111/j.1365-246X.2005.02727.x.

Rowland, J. V., E. Baker, C. J. Ebinger, D. Keir, T. Kidane, J. Biggs, N. Hayward, and T. J. Wright (2007), Fault growth at a nascent slow-spreading ridge: 2005 dabbahu rifting episode, afar, Geophysical Journal International, 171(3), 1226–1246, doi: 10.1111/j.1365-246x.2007.03584.x.

Rubin, A. M. (1992), Dike-induced faulting and graben subsidence in volcanic rift zones, Journal of geophysical research, 97(B2), 1839–1858, doi: 10.1029/91jb02170.

Rubin, A. M. (1993), Tensile fracture of rock at high confining pressure: Implications for dike propagation, Journal of geophysical research, 98(B9), 15,919, doi: 10.1029/93jb01391.

Rubin, A. M., and D. D. Pollard (1988), Dike-induced faulting in rift zones of iceland and afar, Geology, 16(5), 413, doi: 10.1130/0091-7613(1988)016<0413:difirz>2.3.co;2.

Schaaf, A., and C. E. Bond (2019), Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodeling and machine learning, Solid earth, 10(4), 1049–1061, doi: 10.5194/se-10-1049-2019.

Schöpfer, M. P. J., C. Childs, and J. J. Walsh (2006), Localisation of normal faults in multilayer sequences, Journal of Structural Geology, 28(5), 816–833, doi: 10.1016/j.jsg.2006.02.003.

Shipley, T. F., and B. Tikoff (2016), Linking cognitive science and disciplinary geoscience practice: The importance of the conceptual model, in 3-D Structural Interpretation: Earth, Mind and Medicine, vol. Memoir 111, AAPG Special Volumes.

Shipton, Z. K., J. J. Roberts, E. L. Comrie, Y. Kremer, R. J. Lunn, and J. S. Caine (2020), Fault fictions: Systematic biases in the conceptualization of fault-zone architecture, Geological Society special publication, 496(1), 125–143.

Stagg, H. M. J., M. B. Alcock, G. Bernardel, A. M. G. Moore, P. A. Symonds, and N. F. Exon (2004), Geological Framework of the Outer Exmouth Plateau and Adjacent Ocean Basins, Geoscience Australia.

Taylor, S. K., A. Nicol, and J. J. Walsh (2008), Displacement loss on growth faults due to sediment compaction, Journal of Structural Geology, 30(3), 394–405, doi: 10.1016/j.jsg.2007.11.006.

Tentler, T. (2005), Propagation of brittle failure triggered by magma in iceland, Tectonophysics, 406(1), 17–38, doi: 10.1016/j.tecto.2005.05.016.

Tibaldi, A., F. L. Bonali, N. Corti, E. Russo, K. Drymoni, E. De Beni, S. Branca, M. Neri, M. Cantarero, and F. P. Mariotto (2022), Surface deformation during the 1928 fissure eruption of mt. etna (italy): Insights from field data and FEM numerical modelling, Tectonophysics, 837(229468), 229,468, doi: 10.1016/j.tecto.2022.229468.

Tindale, K., N. Newell, J. Keall, and N. Smith (1988), Structural evolution and charge history of the exmouth sub-basin, northern carnarvon basin, western australia, in The Sedimentary Basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA, pp. 473–490.

Townsend, M. R., D. D. Pollard, and R. P. Smith (2017), Mechanical models for dikes: A third school of thought, Tectonophysics, 703-704, 98–118, doi: 10.1016/j.tecto.2017.03.008.

Trippanera, D., V. Acocella, J. Ruch, and B. Abebe (2015a), Fault and graben growth along active magmatic divergent plate boundaries in iceland and ethiopia, Tectonics, 34(11), 2318–2348, doi: 10.1002/2015tc003991.

Trippanera, D., J. Ruch, V. Acocella, and E. Rivalta (2015b), Experiments of dike-induced deformation: Insights on the long- term evolution of divergent plate boundaries, Journal of Geophysical Research, [Solid Earth], 120(10), 6913–6942, doi: 10.1002/2014jb011850.

Trippanera, D., J. Ruch, L. Passone, and S. Jónsson (2019), Structural mapping of dike-induced faulting in harrat lunayyir (saudi arabia) by using high resolution drone imagery, Frontiers of earth science, 7, 168, doi: 10.3389/feart.2019.00168.

Urbani, S., V. Acocella, E. Rivalta, and F. Corbi (2017), Propagation and arrest of dikes under topography: Models applied to the 2014 bardarbunga (iceland) rifting event, Geophysical research letters, 44(13), 6692–6701, doi: 10.1002/2017gl073130.

von Hagke, C., M. Kettermann, N. Bitsch, D. Bücken, C. Weismüller, and J. L. Urai (2019), The effect of obliquity of slip in normal faults on distribution of open fractures, Frontiers of earth science, 7(18), doi: 10.3389/feart.2019.00018.

Wilson, C. G., C. E. Bond, and T. F. Shipley (2019), How can geologic decision-making under uncertainty be improved?, Solid earth, 10(5), 1469–1488, doi: 10.5194/se-10-1469-2019.

Wilson, L., and J. W. Head (2002), Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications, Journal of geophysical research, 107(E8).

Woods, J., T. Winder, R. S. White, and B. Brandsdóttir (2019), Evolution of a lateral dike intrusion revealed by relatively- relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, iceland, Earth and planetary science letters, 506, 53–63, doi: 10.1016/j.epsl.2018.10.032.

Wright, T. J., C. Ebinger, J. Biggs, A. Ayele, G. Yirgu, D. Keir, and A. Stork (2006), Magma-maintained rift segmentation at continental rupture in the 2005 afar dyking episode, Nature, 442(7100), 291–294, doi: 10.1038/nature04978.

Xu, W., S. Jónsson, F. Corbi, and E. Rivalta (2016), Graben formation and dike arrest during the 2009 harrat lunayyir dike intrusion in saudi arabia: Insights from InSAR, stress calculations and analog experiments, Journal of Geophysical Research, [Solid Earth], 121(4), 2837–2851, doi: 10.1002/2015jb012505.

Yang, X.-M., and C. Elders (2016), The mesozoic structural evolution of the gorgon platform, north carnarvon basin, australia, Australian Journal of Earth Sciences, 63(6), 755–770, doi: 10.1080/08120099.2016.1243579.