A Snapshot of the Earliest Stages of Normal Fault Growth

Main Article Content

Ahmed Alghuraybi
Rebecca Bell
Christopher Jackson

Abstract

Observations of how faults lengthen and accrue displacement during the very earliest stages of their growth are limited, reflecting the fact that the early syn-kinematic sediments that record this growth are often deeply buried and difficult to image with geophysical data. Here, we use borehole and high-quality 3D seismic reflection data from SW Barents Sea, offshore Norway to quantify the lateral propagation (c. 0.38 – 3.4 mm/year) and displacement accumulation (c. 0.0062 – 0.025 mm/year) rates (averaged over 6.2 Myr) for several long (up to 43 km), moderate displacement (up to 155 m), syn-kinematic faults that we argue provide a unique, essentially ‘fossilised’ snapshot of the earliest stage of fault growth. We show that lateral propagation rates were up to 300 times faster than displacement rates during the initial ~25% of fault lifespan, suggesting that these faults lengthened much more rapidly than they accrued displacement. Our inference of rapid lengthening is also supported by geometric observations including: (i) low Dmax/Lmax (<0.01) scaling relationships, ii) high (>5) length/height aspect ratios, iii) broad, bell-shaped throw-length profiles, and iv) hangingwall depocenters forming during deposition of the first seismically detectable stratigraphic unit spanning the length of the fault. We suggest that the high ratio between lateral propagation rate and displacement rate is likely due to relative immaturity of the studied fault system, an interpretation that supports the ‘constant-length’ fault growth model. Our results highlight the need to document both displacement and lateral propagation rates to further our understanding of how faults evolve across various temporal and spatial scales.

Article Details

How to Cite
Alghuraybi, A., Bell, R., & Jackson, C. (2023). A Snapshot of the Earliest Stages of Normal Fault Growth. τeκτoniκa, 1(2), 11–31. https://doi.org/10.55575/tektonika2023.1.2.29
Section
Articles

References

Alghuraybi, A. (2023), Slip rate data compilation and depth conversion data, doi: 10.6084/m9.figshare.21681107.v4.

Alghuraybi, A., R. E. Bell, and C. A. Jackson (2022), The geometric and temporal evolution of fault-related folds constrain normal fault growth patterns, Barents Sea, offshore Norway, Basin Research, 34(2), 618–639, doi: 10.1111/bre.12633.

Bakke, K., I. A. Kane, O. J. Martinsen, S. A. Petersen, T. A. Johansen, S. Hustoft, F. H. Jacobsen, and A. Groth (2013), Seismic modeling in the analysis of deep-water sandstone termination styles, AAPG Bulletin, 97(9), 1395–1419, doi: 10.1306/03041312069.

Bell, R. E., L. C. McNeill, J. M. Bull, T. J. Henstock, R. E. L. Collier, and M. R. Leeder (2009), Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece, Basin Research, 21(6), 824–855, doi: 10.1111/j.1365-2117.2009.00401.x.

Bell, R. E., C. A. Jackson, P. S. Whipp, and B. Clements (2014), Strain migration during multiphase extension: Observations from the northern North Sea, Tectonics, 33(10), 1936–1963, doi: 10.1002/2014TC003551.

Blakeslee, M. W., and S. A. Kattenhorn (2013), Revised earthquake hazard of the Hat Creek fault, northern California: A case example of a normal fault dissecting variable-age basaltic lavas, Geosphere, 9(5), 1397–1409, doi: 10.1130/GES00910.1.

Briole, P., A. Rigo, H. Lyon-Caen, J. C. Ruegg, K. Papazissi, C. Mitsakaki, A. Balodimou, G. Veis, D. Hatzfeld, and A. Deschamps (2000), Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995, Journal of Geophysical Research, [Solid Earth], 105(B11), 25,605–25,625, doi: 10.1029/2000JB900148.

Brown, A. R. (2001), Color in seismic display, Leading Edge, 20(5), 549–549, doi: 10.1190/1.1438992.

Bull, J. M., T. A. Minshull, N. C. Mitchell, K. Thors, J. K. Dix, and A. I. Best (2003), Fault and magmatic interaction within Iceland’s western rift over the last 9 kyr, Geophysical Journal International, 154(1), F1–F8, doi: 10.1046/j.1365-246X.2003.01990.x.

Cartwright, J., R. Bouroullec, D. James, and H. Johnson (1998), Polycyclic motion history of some Gulf Coast growth faults from high-resolution displacement analysis, Geology, 26(9), 819, doi: 10.1130/0091-7613(1998)026<0819:PMHOSG>2.3.CO;2.

Cartwright, J. A., B. D. Trudgill, and C. S. Mansfield (1995), Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah, Journal of Structural Geology, 17(9), 1319–1326, doi: 10.1016/0191-8141(95)00033-A.

Childs, C., A. Nicol, J. J. Walsh, and J. Watterson (2003), The growth and propagation of synsedimentary faults, Journal of Structural Geology, 25(4), 633–648, doi: 10.1016/S0191-8141(02)00054-8.

Childs, C., R. E. Holdsworth, C. A. Jackson, T. Manzocchi, J. J. Walsh, and G. Yielding (2017), Introduction to the geometry and growth of normal faults, Geological Society, London, Special Publications, 439(1), 1–9, doi: 10.1144/SP439.24.

Clark, S. A., J. I. Faleide, J. Hauser, O. Ritzmann, R. Mjelde, J. Ebbing, H. Thybo, and E. Flüh (2013), Stochastic velocity inversion of seismic reflection/refraction traveltime data for rift structure of the southwest Barents Sea, Tectonophysics, 593, 135–150, doi: 10.1016/j.tecto.2013.02.033.

Corredor, F., J. H. Shaw, and F. Bilotti (2005), Structural styles in the deep-water fold and thrust belts of the Niger Delta, AAPG Bulletin, 89(6), 753–780, doi: 10.1306/02170504074.

Cowie, P. A., and C. H. Scholz (1992), Displacement-length scaling relationship for faults: data synthesis and discussion, Journal of Structural Geology, 14(10), 1149–1156, doi: 10.1016/0191-8141(92)90066-6.

Cowie, P. A., C. Vanneste, and D. Sornette (1993), Statistical physics model for the spatiotemporal evolution of faults, Journal of Geophysical Research, [Solid Earth], 98(B12), 21,809–21,821, doi: 10.1029/93JB02223.

Cowie, P. A., G. P. Roberts, J. M. Bull, and F. Visini (2012), Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings: Fault geometry control on earthquake rupture, Geophysical Journal International, 189(1), 143–160, doi: 10.1111/j.1365-246X.2012.05378.x.

Doré, A. G. (1995), Barents Sea Geology, Petroleum Resources and Commercial Potential, Arctic, 48(3), 207–221.

Faleide, J. I., F. Tsikalas, A. J. Breivik, R. Mjelde, O. Ritzmann, Ø. Engen, J. Wilson, and O. Eldholm (2008), Structure and evolution of the continental margin off Norway and the Barents Sea, Episodes, 31(1), 82–91, doi: 10.18814/epiiugs/2008/v31i1/012.

Friedrich, A. M., B. P. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis (2003), Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years: COMPARISON OF GEODETIC AND GEOLOGIC DATA IN UTAH, Journal of Geophysical Research, [Solid Earth], 108(B4), doi: 10.1029/2001JB000682.

Gawthorpe, R. L., I. Sharp, J. R. Underhill, and S. Gupta (1997), Linked sequence stratigraphic and structural evolution of propagating normal faults, Geology, 25(9), 795, doi: 10.1130/0091-7613(1997)025<0795:LSSASE>2.3.CO;2.

Gawthorpe, R. L., C. A. Jackson, M. J. Young, I. R. Sharp, A. R. Moustafa, and C. W. Leppard (2003), Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt, Journal of Structural Geology, 25(6), 883–895, doi: 10.1016/S0191-8141(02)00088-3.

Gillespie, P. A., J. J. Walsh, and J. Watterson (1992), Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation, Journal of Structural Geology, 14(10), 1157–1172, doi: 10.1016/0191- 8141(92)90067-7.

Jackson, C. A., and A. Rotevatn (2013), 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: A test of competing fault growth models, Journal of Structural Geology, 54, 215–234, doi: 10.1016/j.jsg.2013.06.012.

Jackson, C. A., R. E. Bell, A. Rotevatn, and A. B. M. Tvedt (2017), Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models, Geological Society, London, Special Publications, 439(1), 187–217, doi: 10.1144/SP439.22.

Jackson, J., R. Norris, and J. Youngson (1996), The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns, Journal of Structural Geology, 18(2-3), 217–234, doi: 10.1016/S0191- 8141(96)80046-0.

Kim, Y.-S., and D. J. Sanderson (2005), The relationship between displacement and length of faults: a review, Earth-Science Reviews, 68(3-4), 317–334, doi: 10.1016/j.earscirev.2004.06.003.

Lathrop, B. A., C. C. A. Jackson, R. E. Bell, and A. Rotevatn (2021), Normal Fault Kinematics and the Role of Lateral Tip Retreat: An Example From Offshore NW Australia, Tectonics, 40(5), doi: 10.1029/2020TC006631.

Lathrop, B. A., C. A. Jackson, R. E. Bell, and A. Rotevatn (2022), Displacement/Length Scaling Relationships for Normal Faults; a Review, Critique, and Revised Compilation, Frontiers of Earth Science in China, 10, 907,543, doi: 10.3389/feart.2022.907543.

Manighetti, I., M. Campillo, S. Bouley, and F. Cotton (2007), Earthquake scaling, fault segmentation, and structural maturity, Earth and planetary science letters, 253(3-4), 429–438, doi: 10.1016/j.epsl.2006.11.004.

Meyer, V., A. Nicol, C. Childs, J. J. Walsh, and J. Watterson (2002), Progressive localisation of strain during the evolution of a normal fault population, Journal of Structural Geology, 24(8), 1215–1231, doi: 10.1016/S0191-8141(01)00104-3.

Morewood, N. C., and G. P. Roberts (1999), Lateral propagation of the surface trace of the South Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement–length relationships, Journal of Structural Geology, 21(6), 635–652, doi: 10.1016/S0191-8141(99)00049-8.

Morley, C. K. (1999), Patterns of displacement along large normal faults: Implications for basin evolution and fault propagation, based on examples from east africa, AAPG bulletin, 83 (1999), doi: 10.1306/00aa9c0a-1730-11d7- 8645000102c1865d.

Mouslopoulou, V., J. J. Walsh, and A. Nicol (2009), Fault displacement rates on a range of timescales, Earth and planetary science letters, 278(3-4), 186–197, doi: 10.1016/j.epsl.2008.11.031.

Mouslopoulou, V., A. Nicol, J. J. Walsh, J. G. Begg, D. B. Townsend, and D. T. Hristopulos (2012), Fault-slip accumulation in an active rift over thousands to millions of years and the importance of paleoearthquake sampling, Journal of Structural Geology, 36, 71–80, doi: 10.1016/j.jsg.2011.11.010.

Nicol, A., J. Watterson, J. J. Walsh, and C. Childs (1996), The shapes, major axis orientations and displacement patterns of fault surfaces, Journal of Structural Geology, 18(2-3), 235–248, doi: 10.1016/S0191-8141(96)80047-2.

Nicol, A., J. J. Walsh, J. Watterson, and J. R. Underhill (1997), Displacement rates of normal faults, Nature, 390(6656), 157–159, doi: 10.1038/36548.

Nicol, A., J. J. Walsh, T. Manzocchi, and N. Morewood (2005), Displacement rates and average earthquake recurrence intervals on normal faults, Journal of Structural Geology, 27(3), 541–551, doi: 10.1016/j.jsg.2004.10.009.

Nicol, A., J. J. Walsh, P. Villamor, H. Seebeck, and K. R. Berryman (2010), Normal fault interactions, paleoearthquakes and growth in an active rift, Journal of Structural Geology, 32(8), 1101–1113, doi: 10.1016/j.jsg.2010.06.018.

Nicol, A., R. Robinson, R. Van Dissen, and A. Harvison (2016), Variability of recurrence interval and single-event slip for surface-rupturing earthquakes in New Zealand, New Zealand Journal of Geology and Geophysics, 59(1), 97–116, doi: 10.1080/00288306.2015.1127822.

Nicol, A., V. Mouslopoulou, J. Begg, and O. Oncken (2020), Displacement Accumulation and Sampling of Paleoearthquakes on Active Normal Faults of Crete in the Eastern Mediterranean, Geochemistry, Geophysics, Geosystems, 21(11), doi: 10.1029/2020GC009265.

NPD (2023), Wellbore: 7124/4-1 S, Tech. Rep. 7124/4-1 S, Norwegian Petroleum Directorate.

Osagiede, E. E., O. B. Duffy, C. A. Jackson, and T. Wrona (2014), Quantifying the growth history of seismically imaged normal faults, Journal of Structural Geology, 66, 382–399, doi: 10.1016/j.jsg.2014.05.021

.

Robinson, R., A. Nicol, J. J. Walsh, and P. Villamor (2009), Features of earthquake occurrence in a complex normal fault network: Results from a synthetic seismicity model of the Taupo Rift, New Zealand, Journal of geophysical research, 114(B12), B12,306, doi: 10.1029/2008JB006231.

Robson, A. G., R. C. King, and S. P. Holford (2017), Structural evolution of a gravitationally detached normal fault array: analysis of 3D seismic data from the Ceduna Sub-Basin, Great Australian Bight, Basin Research, 29(5), 605–624, doi: 10.1111/bre.12191.

Roche, V., C. Homberg, and M. Rocher (2013), Fault nucleation, restriction, and aspect ratio in layered sections: Quantification of the strength and stiffness roles using numerical modeling: FAULT MODELING IN LAYERED SECTIONS, Journal of Geophysical Research, [Solid Earth], 118(8), 4446–4460, doi: 10.1002/jgrb.50279.

Roche, V., G. Camanni, C. Childs, T. Manzocchi, J. Walsh, J. Conneally, M. M. Saqab, and E. Delogkos (2021), Variability in the three-dimensional geometry of segmented normal fault surfaces, Earth-Science Reviews, 216, 103,523, doi: 10.1016/j.earscirev.2021.103523.

Rojo, L. A., N. Cardozo, A. Escalona, and H. Koyi (2019), Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea, AAPG Bulletin, 103(9), 2177–2217, doi: 10.1306/01301918028.

Rotevatn, A., C. A. Jackson, A. B. M. Tvedt, R. E. Bell, and I. Blækkan (2019), How do normal faults grow?, Journal of Structural Geology, 125, 174–184, doi: 10.1016/j.jsg.2018.08.005.

Schlische, R. W., S. S. Young, R. V. Ackermann, and A. Gupta (1996), Geometry and scaling relations of a population of very small rift-related normal faults, Geology, 24(8), 683–686, doi: 10.1130/0091-7613(1996)024<0683:GASROA>2.3.CO;2.

Scholz, C. A., T. C. Moore, D. R. Hutchinson, A. J. Golmshtok, K. D. Klitgord, and A. G. Kurotchkin (1998), Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: seismic data examples from the East African and Baikal rifts, Palaeogeography, palaeoclimatology, palaeoecology, 140(1-4), 401–420, doi: 10.1016/S0031-0182(98)00022-4.

Schultz, R. A., and H. Fossen (2002), Displacement–length scaling in three dimensions: the importance of aspect ratio and application to deformation bands, Journal of Structural Geology, 24(9), 1389–1411, doi: 10.1016/S0191-8141(01)00146-8.

Shillington, D. J., C. A. Scholz, P. R. N. Chindandali, J. B. Gaherty, N. J. Accardo, E. Onyango, C. J. Ebinger, and A. A. Nyblade (2020), Controls on Rift Faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa, Tectonics, 39(3), doi: 10.1029/2019TC005633.

Soliva, R., and A. Benedicto (2005), Geometry, scaling relations and spacing of vertically restricted normal faults, Journal of Structural Geology, 27(2), 317–325, doi: 10.1016/j.jsg.2004.08.010.

Spathopoulos, F. (1996), An insight on salt tectonics in the Angola Basin, South Atlantic, Geological Society, London, Special Publications, 100(1), 153–174, doi: 10.1144/GSL.SP.1996.100.01.11.

Wallace, L. M., S. Ellis, T. Little, P. Tregoning, N. Palmer, R. Rosa, R. Stanaway, J. Oa, E. Nidkombu, and J. Kwazi (2014), Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea, Geochemistry, Geophysics, Geosystems, 15(11), 4267–4290, doi: 10.1002/2014GC005458.

Walsh, J. J., and J. Watterson (1988), Analysis of the relationship between displacements and dimensions of faults, Journal of Structural Geology, 10(3), 239–247, doi: 10.1016/0191-8141(88)90057-0.

Walsh, J. J., and J. Watterson (1991), Geometric and kinematic coherence and scale effects in normal fault systems, Geological Society, London, Special Publications, 56(1), 193–203, doi: 10.1144/GSL.SP.1991.056.01.13.

Walsh, J. J., A. Nicol, and C. Childs (2002), An alternative model for the growth of faults, Journal of Structural Geology, 24(11), 1669–1675, doi: 10.1016/S0191-8141(01)00165-1.

Walsh, J. J., W. R. Bailey, C. Childs, A. Nicol, and C. G. Bonson (2003), Formation of segmented normal faults: a 3-D perspective,

Journal of Structural Geology, 25(8), 1251–1262, doi: 10.1016/S0191-8141(02)00161-X.

Watterson, J. (1986), Fault dimensions, displacements and growth, Pure and Applied Geophysics PAGEOPH, 124(1-2), 365–373, doi: 10.1007/BF00875732.