Hot, Wide, Continental Back-arcs Explain Earth’s Enigmatic mid-Proterozoic Magmatic and Metamorphic Record
Main Article Content
Abstract
Higher than average thermobaric ratios (temperature/pressure) of metamorphic rocks and abundant ‘dry’ ferroan magmatism including massif anorthosite suites are two enigmatic features of the mid-Proterozoic (1.85–0.85 Ga) that have unclear origins. It has been proposed that elevated mantle temperatures due to insulation under the Columbia supercontinent, and/or to plate slowdown, combined with thin lithosphere, led to high continental geothermal gradients, high-temperature metamorphism, and an increase in dry, ferroan magmatism. Geodynamic modelling predicts that continental subduction zones at mid-Proterozoic mantle potential temperatures (80–150 °C hotter than at present) would exhibit key differences to the Phanerozoic, critically, extensive slab rollback combined with greater volumes of decompression melting of the asthenosphere would lead to wide regions of back-arc magmatism. We posit that these hot, wide continental back-arcs can effectively explain the abundance of ferroan magmatism, anorthosite suites, and high T/P metamorphism. Our model negates the need for extra mantle heating from supercontinental insulation or plate slowdown and shows that the tectonic regime of the mid-Proterozoic was a transitional phase between those of the Archean (likely comprising peel-back tectonics and episodic subduction) and the Phanerozoic (comprising deep continental subduction), and which could have resulted solely from secular cooling of the mantle.
Article Details
References
Alonso-Perez, R., O. Müntener, and P. Ulmer (2009), Ig- neous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liq- uids, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 157(4), 541–558, doi: 10.1007/s00410-008-0351-8.
Anderson, J. L., and J. Morrison (2005), Ilmenite, mag- netite, and peraluminous mesoproterozoic anorogenic granites of laurentia and baltica, Lithos, 80(1), 45–60, doi: 10.1016/j.lithos.2004.05.008.
Ashwal, L. D. (2010), The temporality of anorthosites, Canadian mineralogist, 48(4), 711–728, doi: 10.3749/can- min.48.4.711.
Ashwal, L. D., and G. M. Bybee (2017), Crustal evolution and the temporality of anorthosites, Earth-Science Reviews, 173, 307–330, doi: 10.1016/j.earscirev.2017.09.002.
Åhäll, K.-I., J. N. Connelly, and T. S. Brewer (2000), Episodic rapakivi magmatism due to distal orogenesis?: Correla- tion of 1.69–1.50 ga orogenic and inboard, “anorogenic” events in the baltic shield, Geology, 28(9), 823–826, doi: 10.1130/0091-7613(2000)28<823:ERMDTD>2.0.CO;2.
Bickford, M. E., W. R. Van Schmus, K. E. Karlstrom, P. A. Mueller, and G. D. Kamenov (2015), Mesoproterozoic- trans-Laurentian magmatism: A synthesis of continent- wide age distributions, new SIMS U–Pb ages, zircon saturation temperatures, and hf and nd isotopic com- positions, Precambrian research, 265, 286–312, doi: 10.1016/j.precamres.2014.11.024.
Brown, M., and T. Johnson (2018), Secular change in meta- morphism and the onset of global plate tectonics, The American mineralogist, 103(2), 181–196, doi: 10.2138/am-2018-6166.
Brown, M., and T. Johnson (2019), Time’s arrow, time’s cycle: Granulite metamorphism and geodynamics, Mineralogi- cal magazine, 83(3), 323–338, doi: 10.1180/mgm.2019.19.
Brown, M., T. Johnson, and C. J. Spencer (2022), Secu- lar changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on earth, Journal of the Geological Society, 179(5), jgs2022–050, doi: 10.1144/jgs2022-050.
Capitanio, F. A., O. Nebel, P. A. Cawood, R. F. Wein- berg, and F. Clos (2019), Lithosphere differentia- tion in the early earth controls archean tectonics, Earth and planetary science letters, 525, 115,755, doi: 10.1016/j.epsl.2019.115755.
Cawood, P. A., and C. J. Hawkesworth (2014), Earth’s middle age, Geology, 42(6), 503–506, doi: 10.1130/g35402.1.
Cawood, P. A., A. Kröner, W. J. Collins, T. M. Kusky, W. D. Mooney, and B. F. Windley (2009), Accretionary orogens through earth history, Geological Society, London, Special Publications, 318(1), 1–36, doi: 10.1144/SP318.1.
Cawood, P. A., C. J. Hawkesworth, S. A. Pisarevsky, B. Dhuime, F. A. Capitanio, and O. Nebel (2018), Ge- ological archive of the onset of plate tectonics, Philo- sophical transactions. Series A, Mathematical, physical, and engineering sciences, 376(2132), 20170,405, doi: 10.1098/rsta.2017.0405.
Chowdhury, P., T. Gerya, and S. Chakraborty (2017), Emer- gence of silicic continents as the lower crust peels off on a hot plate-tectonic earth, Nature geoscience, 10(9), 698–703, doi: 10.1038/ngeo3010.
Chowdhury, P., S. Chakraborty, T. V. Gerya, P. A. Ca- wood, and F. A. Capitanio (2020), Peel-back con- trolled lithospheric convergence explains the secular transitions in archean metamorphism and magmatism, Earth and planetary science letters, 538, 116,224, doi: 10.1016/j.epsl.2020.116224.
Collins, W. J., S. D. Beams, A. J. R. White, and B. W. Chap- pell (1982), Nature and origin of a-type granites with par- ticular reference to southeastern australia, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 80(2), 189–200, doi: 10.1007/bf00374895.
Collins, W. J., H.-Q. Huang, P. Bowden, and A. I. S. Kemp (2020), Repeated S–I–A-type granite trilogy in the lach- lan orogen and geochemical contrasts with a-type gran- ites in nigeria: implications for petrogenesis and tectonic discrimination, Geological Society, London, Special Publica- tions, 491(1), 53–76, doi: 10.1144/SP491-2018-159.
Condie, K. C. (2021), Two major transitions in earth history: Evidence of two lithospheric strength thresholds, The Journal of geology, 129(5), 455–473, doi: 10.1086/711141.
Condie, K. C., S. A. Pisarevsky, and S. J. Puetz (2021), LIPs, orogens and supercontinents: The ongo- ing saga, Gondwana Research, 96, 105–121, doi: 10.1016/j.gr.2021.05.002.
Condie, K. C., S. A. Pisarevsky, S. J. Puetz, C. J. Spencer, W. Teixeira, and F. Meira Faleiros (2022), A reappraisal of the global tectono-magmatic lull at ∼2.3 ga, Precam- brian research, 376(106690), 106,690, doi: 10.1016/j.pre-camres.2022.106690.
Currie, C. A., R. S. Huismans, and C. Beaumont (2008), Thin- ning of continental backarc lithosphere by flow-induced gravitational instability, Earth and planetary science letters, 269(3), 436–447, doi: 10.1016/j.epsl.2008.02.037.
DeCelles, P. G., M. N. Ducea, P. Kapp, and G. Zandt (2009), Cyclicity in cordilleran orogenic systems, Nature geo- science, 2(4), 251–257, doi: 10.1038/ngeo469.
Fischer, R., and T. Gerya (2016), Regimes of subduction and lithospheric dynamics in the precambrian: 3D thermo- mechanical modelling, Gondwana Research, 37, 53–70, doi: 10.1016/j.gr.2016.06.002.
Frost, B. R., C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. El- lis, and C. D. Frost (2001), A geochemical classification for granitic rocks, Journal of Petrology, 42(11), 2033–2048, doi: 10.1093/petrology/42.11.2033.
Frost, C. D., and B. R. Frost (1997), Reduced rapakivi-type granites: The tholeiite connec- tion, Geology, 25(7), 647–650, doi: 10.1130/0091- 7613(1997)025<0647:RRTGTT>2.3.CO;2.
Frost, C. D., and B. R. Frost (2010), On ferroan (a-type) grani- toids: their compositional variability and modes of origin, Journal of Petrology, 52(1), 39–53, doi: 10.1093/petrolo- gy/egq070.
Ganne, J., and X. Feng (2017), Primary magmas and mantle temperatures through time, Geochem- istry, Geophysics, Geosystems, 18(3), 872–888, doi: 10.1002/2016GC006787.
Gard, M., D. Hasterok, and J. A. Halpin (2019), Global whole- rock geochemical database compilation, Earth system sci- ence data, 11(4), 1553–1566, doi: 10.5194/essd-11-1553-2019.
Haapala, I., and O. Tapani Rämö (1992), Tectonic setting and origin of the proterozoic rapakivi granites of southeast- ern fennoscandia, Earth and environmental science trans- actions of the Royal Society of Edinburgh, 83(1-2), 165–171, doi: 10.1017/S0263593300007859.
Haschke, M., W. Siebel, A. Günther, and E. Scheuber (2002), Repeated crustal thickening and recycling during the andean orogeny in north chile (21°-26°s), Journal of geophysical research, 107(B1), ECV 6–1–ECV 6–18, doi: 10.1029/2001jb000328.
Herzberg, C., K. Condie, and J. Korenaga (2010), Ther- mal history of the earth and its petrological expression, Earth and planetary science letters, 292(1), 79–88, doi: 10.1016/j.epsl.2010.01.022.
Holder, R. M., D. R. Viete, M. Brown, and T. E. Johnson (2019), Metamorphism and the evolution of plate tectonics, Na- ture, 572(7769), 378–381, doi: 10.1038/s41586-019-1462-2.
Hyndman, R. D. (2019), Origin of regional barrovian meta- morphism in hot backarcs prior to orogeny deformation, Geochemistry, Geophysics, Geosystems, 20(1), 460–469, doi: 10.1029/2018gc007650.
Hyndman, R. D., C. A. Currie, and S. P. Mazzotti (2005), Subduction zone backarcs, mobile belts, and oro- genic heat, GSA today: a publication of the Geolog- ical Society of America, 15(2), 4, doi: 10.1130/1052- 5173(2005)15<4:szbmba>2.0.co;2.
Indares, A. (2020), Deciphering the metamorphic architec- ture and magmatic patterns of large hot orogens: In- sights from the central grenville province, Gondwana Re- search, 80, 385–409, doi: 10.1016/j.gr.2019.10.013.
Ivan, Z., K. Anthony I S, S. R Hugh, R. Daniela, K. Fawna, H. Jo- hannes, J. Tim E, G. Klaus, W. Roberto F, V. Jeff D, M. Laure, and R. Sandra S (2022), Greenstone burial–exhumation cycles at the late archean transition to plate tectonics, Na- ture communications, 13(1), 1–17, doi: 10.1038/s41467-022-35208-2.
Korhonen, F. J., and S. P. Johnson (2015), The role of radio- genic heat in prolonged intraplate reworking: The capri- corn orogen explained?, Earth and planetary science let- ters, 428, 22–32, doi: 10.1016/j.epsl.2015.06.039.
Landenberger, B., and W. J. Collins (1996), Derivation of a- type granites from a dehydrated charnockitic lower crust: Evidence from the chaelundi complex, eastern australia, Journal of Petrology, 37(1), 145–170, doi: 10.1093/petrol- ogy/37.1.145.
Lenardic, A., L. Moresi, A. M. Jellinek, C. J. O’Neill, C. M. Cooper, and C. T. Lee (2011), Continents, superconti- nents, mantle thermal mixing, and mantle thermal isola- tion: Theory, numerical simulations, and laboratory ex- periments, Geochemistry, Geophysics, Geosystems, 12(10), doi: 10.1029/2011GC003663.
Liu, C., A. H. Knoll, and R. M. Hazen (2017), Geochem- ical and mineralogical evidence that rodinian assem- bly was unique, Nature communications, 8(1), 1950, doi: 10.1038/s41467-017-02095-x.
Liu, C., S. E. Runyon, A. H. Knoll, and R. M. Hazen (2019), The same and not the same: Ore geology, mineralogy and geochemistry of rodinia assembly versus other su- percontinents, Earth-Science Reviews, 196, 102,860, doi: 10.1016/j.earscirev.2019.05.004.
Liu, M. (2001), Cenozoic extension and magmatism in the north american cordillera: the role of gravita- tional collapse, Tectonophysics, 342(3), 407–433, doi: 10.1016/S0040-1951(01)00173-1.
Morrissey, L. J., M. Hand, T. Raimondo, and D. E. Kelsey (2014), Long-lived high-t , low-p granulite fa- cies metamorphism in the arunta region, central aus- tralia, Journal of Metamorphic Geology, 32(1), 25–47, doi: 10.1111/jmg.12056.
Moyen, J.-F. (2009), High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”, Lithos, 112(3-4), 556–574, doi: 10.1016/j.lithos.2009.04.001.
O’Neill, C., M. Brown, B. Schaefer, and J. A. Gazi (2022), Earth’s anomalous middle-age magmatism driven by plate slowdown, Scientific reports, 12(1), 10,460, doi: 10.1038/s41598-022-13885-9.
Palin, R. M., M. Santosh, W. Cao, S.-S. Li, D. Hernández- Uribe, and A. Parsons (2020), Secular change and the on- set of plate tectonics on earth, Earth-Science Reviews, 207, 103,172, doi: 10.1016/j.earscirev.2020.103172.
Perchuk, A. L., V. S. Zakharov, T. V. Gerya, and M. Brown (2019), Hotter mantle but colder subduction in the precambrian: What are the implications?, Precam- brian research, 330, 20–34, doi: 10.1016/j.precam- res.2019.04.023.
Rämö, O. T., and I. Haapala (1995), One hundred years of rapakivi granite, Mineralogy and Petrology, 52(3), 129–185, doi: 10.1007/BF01163243.
Roberts, N. M. W., J. Salminen, Å. Johansson, R. N. Mitchell, R. M. Palin, K. C. Condie, and C. J. Spencer (2022), On the enigmatic mid-proterozoic: Single-lid versus plate tectonics, Earth and planetary science letters, 594, 117,749, doi: 10.1016/j.epsl.2022.117749.
Sizova, E., T. Gerya, M. Brown, and L. L. Perchuk (2010), Subduction styles in the precambrian: Insight from numerical experiments, Lithos, 116(3), 209–229, doi: 10.1016/j.lithos.2009.05.028.
Sizova, E., T. Gerya, and M. Brown (2014), Contrast- ing styles of phanerozoic and precambrian continen- tal collision, Gondwana Research, 25(2), 522–545, doi: 10.1016/j.gr.2012.12.011.
Slagstad, T., N. M. W. Roberts, N. Coint, I. Høy, S. Sauer, C. L. Kirkland, M. Marker, T. S. Røhr, I. H. C. Henderson, M. A. Stormoen, Ø. Skår, B. E. Sørensen, and G. Bybee (2018), Magma-driven, high-grade metamorphism in the sveconorwegian province, southwest norway, during the terminal stages of fennoscandian shield evolution, Geo- sphere, 14(2), 861–882, doi: 10.1130/GES01565.1.
Slagstad, T., I. H. C. Henderson, N. M. W. Roberts, E. V. Kulakov, M. Ganerød, C. L. Kirkland, B. Dalslåen, R. A. Creaser, and N. Coint (2022), Anorthosite formation and emplacement coupled with differential tectonic exhuma- tion of ultrahigh-temperature rocks in a sveconorwegian continental back-arc setting, Precambrian research, 376, 106,695, doi: 10.1016/j.precamres.2022.106695.
Sobolev, S. V., and A. Y. Babeyko (2005), What drives orogeny in the andes?, Geology, 33(8), 617–620, doi: 10.1130/g21557ar.1.
Spencer, C. J., R. N. Mitchell, and M. Brown (2021), Enigmatic mid-proterozoic orogens: Hot, thin, and low, Geophysical research letters, 48(16), doi: 10.1029/2021gl093312.
Stern, R. (2020), The mesoproterozoic single-lid tectonic episode: Prelude to modern plate tectonics, GSA today: a publication of the Geological Society of America, 30(12), 4–10, doi: 10.1130/gsatg480a.1.
Tamblyn, R., D. Hasterok, M. Hand, and M. Gard (2022), Mantle heating at ca. 2 ga by continental insulation: Evi- dence from granites and eclogites, Geology, 50(1), 91–95, doi: 10.1130/G49288.1.
Vigneresse, J. L. (2005), The specific case of the Mid- Proterozoic rapakivi granites and associated suite within the context of the columbia supercontinent, Precam- brian research, 137(1), 1–34, doi: 10.1016/j.precam- res.2005.01.001.
Vogt, K., T. V. Gerya, and A. Castro (2012), Crustal growth at active continental margins: Numerical modeling, Physics of the Earth and Planetary Interiors, 192-193, 1–20, doi: 10.1016/j.pepi.2011.12.003.
Weller, O. M., A. Copley, W. G. R. Miller, R. M. Palin, and B. Dyck (2019), The relationship between mantle potential temperature and oceanic lithosphere buoy- ancy, Earth and planetary science letters, 518, 86–99, doi: 10.1016/j.epsl.2019.05.005.
Windley, B. F., T. Kusky, and A. Polat (2021), Onset of plate tectonics by the eoarchean, Precambrian research, 352, 105,980, doi: 10.1016/j.precamres.2020.105980.
Zou, Y., R. N. Mitchell, X. Chu, M. Brown, J. Jiang, Q. Li, L. Zhao, and M. Zhai (2023), Surface evolution during the mid-proterozoic stalled by mantle warming under Columbia–Rodinia, Earth and planetary science letters, 607, 118,055, doi: 10.1016/j.epsl.2023.118055.