Exploring the Origin of Geoid Low and Topography High in West Antarctica: Insights from Density Anomalies and Mantle Convection Models
Main Article Content
Abstract
The deepest geoid low globally with respect to hydrostatic equilibrium is in the Ross Sea area. Nearby in West Antarctica is a residual topography high. Both are in a region with thin lithosphere, where a mantle plume has been suggested. Hence upper mantle viscosity could be regionally reduced, allowing for faster rebound than elsewhere upon melting of the West Antarctic Ice Sheet, one of the global climate system’s tipping elements. To study possible causes of the geoid low / topography high combination, we compute the effects of disk-shaped density anomalies. With -1% density anomaly and a global average radial viscosity structure, geoid low and topography high can be explained with disk radius about 10° and depth range ~150-650 km. Alternatively, there may be two separate disks somewhat laterally displaced, one just below the lithosphere and mainly causing a dynamic topography high and one below the transition zone causing the geoid low. If viscosity in the uppermost mantle is reduced by a factor 10 (from 50 to 350 km depth) to 100 (from 100 to 220 km), one shallow disk in the depth range 50-350 km would also be sufficient. In order to test the feasibility of such density models, we perform computations of a thermal plume that enters at the base of a cartesian box corresponding to a region in the upper mantle, as well as some whole-mantle thermal plume models, with ASPECT. These plume models have typically a narrow conduit and the plume tends to only become wider as it spreads beneath the lithosphere, typically shallower than ~300 km. These results are most consistent with the shallow disk model with reduced uppermost mantle viscosity, hence providing further support for such low viscosities beneath West Antarctica.
Article Details
References
A, G., J. Wahr, and S. Zhong (2012), Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophysical Journal International, 192(2), 557–572, doi: 10.1093/gji/ggs030.
Accardo, N. J., D. A. Wiens, S. Hernandez, R. C. Aster, A. Nyblade, A. Huerta, S. Anandakrishnan, T. Wilson, D. S. Heeszel, and
I. W. D. Dalziel (2014), Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis , Geophysical Journal International, 198(1), 414–429, doi: 10.1093/gji/ggu117.
An, M., D. Wiens, Y. Zhao, M. Feng, A. Nyblade, M. Kanao, Y. Li, A. Maggi, and J.-J. Lévêque (2015a), Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities, Journal of Geophysical Research: Solid Earth, 120, 8720–8742, doi: 10.1002/2015JB011917.
An, M., D. Wiens, Y. Zhao, M. Feng, A. Nyblade, M. Kanao, Y. Li, A. Maggi, and J.-J. Lévêque (2015b), S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves, Journal of Geophysical Research: Solid Earth, 120, 359–383, doi: 10.1002/2014JB011332.
Artemieva, I. M. (2022), Antarctica ice sheet basal melting enhanced by high mantle heat, Earth-Science Reviews, 226, 103954, doi: 10.1016/j.earscirev.2022.103954.
Austermann, J., D. Pollard, J. X. Mitrovica, R. Moucha, A. M. Forte, R. M. DeConto, D. B. Rowley, and M. E. Raymo (2015), The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43(10), 927–930, doi: 10.1130/G36988.1.
Bangerth, W., J. Dannberg, M. Fraters, R. Gassmoeller, A. Glerum, T. Heister, and J. Naliboff (2021a), ASPECT v2.3.0, doi: 10.5281/zenodo.5131909.
Bangerth, W., J. Dannberg, M. Fraters, R. Gassmoeller, A. Glerum, T. Heister, and J. Naliboff (2021b), ASPECT: Advanced Solver for Problems in Earth’s ConvecTion, User Manual, doi: 10.6084/m9.figshare.4865333.
Bao, X., C. Lithgow-Bertelloni, M. Jackson, and B. Romanowicz (2022), On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges, Science, 375, 57–61, doi: 10.1126/science.abj8944.
Barletta, V. R., M. Bevis, B. E. Smith, T. Wilson, A. Brown, A. Bordoni, M. Willis, S. A. Khan, M. Rovira-Navarro, I. Dalziel, R. Smalley, E. Kendrick, S. Konfal, D. J. Caccamise, R. C. Aster, A. Nyblade, and D. A. Wiens (2018), Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360(6395), 1335–1339, doi: 10.1126/science.aao1447.
Behrendt, J. C., W. E. LeMasurier, A. K. Cooper, F. Tessensohn, A. Trehu, and D. Damaske (1991), Geophysical studies of the West Antarctic rift system, Tectonics, 10, 1257–1273.
Behrendt, J. C., W. LeMasurier, and A. K. Cooper (1992), The West Antarctic rift system, a propagating rift “captured” by a mantle plume, in: Recent Progress in Antarctic Earth Science, edited by K. Yoshida, K. Kaminuma and K. Shiraishi, Terra Science, Tokyo, pp. 315–322.
Blank, B., V. Barletta, H. Hu, F. Pappa, and W. van der Wal (2021), Effect of Lateral and Stress-Dependent Viscosity Variations on GIA Induced Uplift Rates in the Amundsen Sea Embayment, Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009807, doi: 10.1029/2021GC009807.
Bredow, E., B. Steinberger, R. Gassmöller, and J. Dannberg (2023), Mantle convection and possible mantle plumes beneath Antarctica - insights from geodynamic models and implications for topography, Geological Society of London, Memoirs, 56, 253–266, doi: 10.1144/M56-2020-2.
Chambat, F., Y. Ricard, and B. Valette (2010), Flattening of the Earth: further from hydrostaticity than previously estimated, Geophysical Journal International, 183, 727–732, doi: 10.1111/j.1365-246X.2010.04771.x.
Chase, C. G., and D. R. Sprowl (1983), The modern geoid and ancient plate boundaries, Earth and Planetary Science Letters, 62, 314–320, doi: 10.1016/0012-821X(83)90002-X.
Christensen, U. R. (1983), Convection in a variable-viscosity fluid: Newtonian versus power-law rheology, Earth and Planetary Science Letters, 64, 153–162, doi: 10.1016/0012-821X(83)90060-2.
Cooper, A. F., L. J. Adam, R. F. Coulter, G. N. Eby, and W. C. McIntosh (2007), Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica, Journal of Volcanology and Geothermal Research, 165(3), 189–216, doi: 10.1016/j.jvolgeores.2007.06.003.
Crameri, F. (2018), Scientific colour maps, Zenodo, doi: 10.5281/zenodo.1243862.
Cui, R., J. Fang, and Y. Wang (2022), Effect of Mantle Viscosity Structures on Simulations of Geoid Anomalies in the Ross Sea Area, Pure and Applied Geophysics, 179, 2841–2850, doi: 10.1007/s00024-022-03081-1.
DeConto, R. M., and D. Pollard (2003), Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245–249, doi: 10.1038/nature01290.
Doubrovine, P. V., B. Steinberger, and T. H. Torsvik (2012), Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans, Journal of Geophysical Research, 117, B09101, doi: 10.1029/2011JB009072.
Emry, E. L., A. A. Nyblade, J. Julià, S. Anandakrishnan, R. C. Aster, D. A. Wiens, A. D. Huerta, and T. J. Wilson (2015), The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings, Geochemistry, Geophysics, Geosystems, 16, 40–58, doi: 10.1002/2014GC005588.
Farnetani, C. G., and H. Samuel (2005), Beyond the thermal plume paradigm, Geophysical Research Letters, 32(7), L07311, doi: 10.1029/2005GL022360.
Fisher, A. T., K. D. Mankoff, S. M. Tulaczyk, S. W. Tyler, N. Foley, and the WISSARD Science Team (2015), High geothermal heat flux measured below the West Antarctic Ice Sheet, Science Advances, 1, e150009, doi: 10.1126/sciadv.1500093.
Fox Maule, C., M. C. Purucker, N. Olsen, and K. Mosegaard (2005), Heat flux anomalies in Antarctica revealed by satellite magnetic data, Science, 309, 464–467, doi: 10.1126/science.1106888.
Garbe, J., T. Albrecht, A. Levermann, J. F. Donges, and R. Winkelmann (2020), The hysteresis of the Antarctic Ice Sheet, Nature, 585, 538–544.
Gassmöller, R., J. Dannberg, E. Bredow, B. Steinberger, and T. H. Torsvik (2016), Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism–the example of Tristan, Geochemistry, Geophysics, Geosystems, 17(4), 1454–1479, doi: 10.1002/2015GC006177.
Ghosh, A., T. W. Becker, and S. J. Zhong (2010), Effects of lateral viscosity variations on the geoid, Geophysical Research Letters, 37, L01301, doi: 10.1029/2009GL040426.
Grand, S. P. (2002), Mantle shear-wave tomography and the fate of subducted slabs, Philosophical Transactions of the Royal Society London A, 360, 2475–2491, doi: 10.1098/rsta.2002.1077.
Gubanov, A. P., and W. D. Mooney (2009), New global maps of crustal basement age, Eos Transactions of the American Geophysical Union, 90, Fall Meet. Suppl., Abstract T53B–1583.
Hager, B. H., and R. J. O’Connell (1979), Kinematic models of large-scale flow in the Earth’s mantle, Journal of Geophysical Research, 84, 1031–1048, doi: 10.1029/JB084iB03p01031.
Hager, B. H., and R. J. O’Connell (1981), A simple global model of plate dynamics and mantle convection, Journal of Geophysical Research, 86, 4843–4867, doi: 10.1029/JB086iB06p04843.
Hansen, S. E., J. H. Graw, L. M. Kenyon, A. A. Nyblade, D. A. Wiens, R. C. Aster, A. D. Huerta, S. Anandakrishnan, and T. Wilson (2014), Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica, Earth and Planetary Science Letters, 408, 66–78, doi: 10.1016/j.epsl.2014.09.043.
Hay, C. C., H. C. P. Lau, N. Gomez, J. Austermann, E. Powell, J. X. Mitrovica, K. Latychev, and D. A. Wiens (2017), Sea level fingerprints in a region of complex Earth structure: The case of WAIS, Journal of Climate, 30(6), 1881–1892, doi: 10.1175/JCLI-D-16-0388.1.
Heister, T., J. Dannberg, R. Gassmöller, and W. Bangerth (2017), High accuracy mantle convection simulation through modern numerical methods. II: Realistic models and problems, Geophysical Journal International, 210(2), 833–851, doi: 10.1093/gji/ggx195
.
Herzberg, C., and E. Gazel (2009), Petrological evidence for secular cooling in mantle plumes, Nature, 458, 619–622, doi: 10.1038/nature07857.
Heyn, B. H., C. P. Conrad, and R. G. Trnnes (2020), How thermochemical piles can (periodically) generate plumes at their edges, Journal of Geophysical Research: Solid Earth, 125(6), e2019JB018726, doi: 10.1029/2019JB018726.
Hole, M. J., and W. E. LeMasurier (1994), Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica, Contributions to Mineralogy and Petrology, 117, 187–202, doi: 10.1007/BF00286842.
Hosseini, K., K. J. Matthews, K. Sigloch, G. E. Shephard, M. Domeier, and M. Tsekhmistrenko (2018), SubMachine: Web-Based tools for exploring seismic tomography and other models of Earth’s deep interior, Geochemistry, Geophysics, Geosystems, 19, 1464–1483, doi: 10.1029/2018GC007431.
Ivins, E. R., W. van der Wal, D. A. Wiens, A. J. Lloyd, and L. Caron (2022), Antarctic upper mantle rheology, Geological Society of London, Memoirs, 56, 267–294, doi: 10.1144/M56-2020-19.
Kaufmann, G., P. Wu, and E. R. Ivins (2005), Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics, Journal of Geodynamics, 39(2), 165–181, doi: 10.1016/j.jog.2004.08.009.
Kennett, J. P. (1977), Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography, Journal of Geophysical Research, 82, 3843–3859.
King, M. A., P. L. Whitehouse, and W. van der Wal (2015), Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations, Geophysical Journal International, 204(1), 324–330, doi: 10.1093/gji/ggv461.
Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International, 191, 12–29, doi: 10.1111/j.1365-246X.2012.05609.x.
Kumagai, I., A. Davaille, K. Kurita, and E. Stutzmann (2008), Mantle plumes: Thin, fat, successful, or failing? constraints to explain hot spot volcanism through time and space, Geophysical Research Letters, 35(16), L16301, doi: 10.1029/2008GL035079.
Kyle, P. R., J. A. Moore, and M. F. Thirlwall (1992), Petrologic Evolution of Anorthoclase Phonolite Lavas at Mount Erebus, Ross Island, Antarctica, Journal of Petrology, 33, 849–875, doi: 10.1093/petrology/33.4.849.
Laske, G., G. Masters, Z. Ma, and M. Pasyanos (2013), Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust, in EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, pp. EGU2013–2658.
Lau, H. C. P., J. Austermann, B. K. Holtzman, C. Havlin, A. J. Lloyd, C. Book, and E. Hopper (2021), Frequency dependent mantle viscoelasticity via the complex viscosity: Cases from Antarctica, Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022,622, doi: 10.1029/2021JB022622.
Lear, C. H., H. Elderfield, and P. A. Wilson (2000), Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269–272, doi: 10.1126/science.287.5451.269.
LeMasurier, W. (2013), Shield volcanoes of Marie Byrd Land, West Antarctic rift: oceanic island similarities, continental signature, and tectonic controls, Bulletin of Volcanology, 75, 726, doi: 10.1007/s00445-013-0726-1.
LeMasurier, W. E., and D. C. Rex (1989), Evolution of linear volcanic ranges in Marie Byrd Land, West Antarctica, Journal of Geophysical Research: Solid Earth, 94(B6), 7223–7236, doi: 10.1029/JB094iB06p07223.
Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber (2008), Tipping elements in the Earth’s climate system, Proceedings of the National Academy of Sciences, 105(6), 1786–1793, doi: 10.1073/pnas.0705414105.
Lin, S.-C., and P. E. van Keken (2006a), Dynamics of thermochemical plumes: 1. plume formation and entrainment of a dense layer, Geochemistry, Geophysics, Geosystems, 7(2), Q02006, doi: 10.1029/2005GC001071.
Lin, S.-C., and P. E. van Keken (2006b), Dynamics of thermochemical plumes: 2. complexity of plume structures and its implications for mapping mantle plumes, Geochemistry, Geophysics, Geosystems, 7(3), Q03003, doi: 10.1029/2005GC001072.
Lloyd, A. J., D. A. Wiens, H. Zhu, J. Tromp, A. A. Nyblade, R. C. Aster, S. E. Hansen, I. W. D. Dalziel, T. J. Wilson, E. R. Ivins, and J. P. O’Donnell (2020), Seismic structure of the Antarctic upper mantle imaged with adjoint tomography, Journal of Geophysical Research: Solid Earth, 125, doi: 10.1029/2019JB017823.
Lobanov, S. S., S. Speziale, and S. Brune (2021), Modelling Mie scattering in pyrolite in the laser-heated diamond anvil cell: Implications for the core-mantle boundary temperature determination, Physics of the Earth and Planetary Interiors, 318, 106773, doi: 10.1016/j.pepi.2021.106773.
Lu, C., S. P. Grand, H. Lai, and E. J. Garnero (2019), TX2019slab: A new P and S tomography model incorporating subducting slabs, Journal of Geophysical Research, 124, 11,549–11,567, doi: 10.1029/2019JB017448.
Martos, Y. M., M. Catalán, T. A. Jordan, A. Golynsky, D. Golynsky, G. Eagles, and D. G. Vaughan (2017), Heat flux distribution of Antarctica unveiled, Geophysical Research Letters, 44(22), 11,417–11,426, doi: 10.1002/2017GL075609.
Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochemistry, Geophysics, Geosystems, 9, Q04,006, doi: 10.1029/2007GC001743.
Nield, G. A., P. L. Whitehouse, W. van der Wal, B. Blank, J. P. O’Donnell, and G. W. Stuart (2018), The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica, Geophysical Journal International, 214(2), 811–824, doi: 10.1093/gji/ggy158.
O’Donnell, J., K. Selway, A. Nyblade, R. Brazier, D. Wiens, S. Anandakrishnan, R. Aster, A. Huerta, T. Wilson, and J. Winberry (2017), The uppermost mantle seismic velocity and viscosity structure of central West Antarctica, Earth and Planetary Science Letters, 472, 38–49, doi: 10.1016/j.epsl.2017.05.016.
Panter, K. S., and A. P. Martin (2022), West Antarctic mantle deduced from mafic magmatism, Geological Society of London, Memoirs, 56, 133–149, doi: 10.1144/M56-2021-10.
Panter, K. S., P. Castillo, S. Krans, C. Deering, W. McIntosh, J. W. Valley, K. Kitajima, P. Kyle, S. Hart, and J. Blusztajn (2018), Melt origin across a rifted continental margin: a case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica, Journal of Petrology, 59(3), 517–558, doi: 10.1093/petrology/egy036.
Paul, H., and M. R. Kumar (2022), Strong influence of tomographic models on geoid prediction: Case studies from Indian Ocean and Ross Sea geoids, Tectonophysics, 836, 229429, doi: 10.1016/j.tecto.2022.229429.
Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research, 117, B04406, doi: 10.1029/2011JB008916.
Pavoni, N. (1969), Zonen lateraler horizontaler Verschiebung in der Erdkruste und daraus ableitbare Aussagen zur globalen Tektonik, Geologische Rundschau, 59, 56–77.
Pavoni, N. (1985), Pacific/anti-Pacific bipolarity in the structure of the Earth’s mantle, Eos Transactions of the American Geophysical Union, 66, 497.
Paxman, G. J. G. (2022), Antarctic palaeotopography, Geological Society of London, Memoirs, 56, 231–251, doi: 10.1144/M56-2020-7.
Powell, E., N. Gomez, C. Hay, K. Latychev, and J. X. Mitrovica (2020), Viscous Effects in the Solid Earth Response to Modern Antarctic Ice Mass Flux: Implications for Geodetic Studies of WAIS Stability in a Warming World, Journal of Climate, 33(2), 443–459, doi: 10.1175/JCLI-D-19-0479.1.
Powell, E. M., L. Pan, M. J. Hoggard, K. Latychev, N. Gomez, J. Austermann, and J. X. Mitrovica (2021), The impact of 3-D Earth structure on far-field sea level following interglacial West Antarctic Ice Sheet collapse, Quaternary Science Reviews, 273, 107256, doi: 10.1016/j.quascirev.2021.107256.
Ricard, Y., L. Fleitout, and C. Froidevaux (1984), Geoid heights and lithospheric stresses for a dynamic Earth, Annales Geophysicae, 2, 267–286.
Richards, F., M. J. Hoggard, S. Ghelichkhan, P. Koelemeijer, and H. Lau (2023), Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs, Earth and Planetary Science Letters, 602, 117964, doi: 10.1016/j.epsl.2022.117964.
Richards, M. A., and B. H. Hager (1984), Geoid anomalies in a dynamic Earth, Journal of Geophysical Research, 89(B7), 5987–6002, doi: 10.1029/JB089iB07p05987.
Rocchi, S., F. Storti, G. Di Vincenzo, and F. Rosetti (2003), Intraplate strike-slip tectonics as an alternative to mantle plume activity for the Cenozoic rift magmatism in the Ross Sea region, Antarctica, Geological Society of London, Special Publications, 210, 145–158, doi: 10.1144/GSL.SP.2003.210.01.09.
Schaeffer, A., and S. Lebedev (2013), Global shear speed structure of the upper mantle and transition zone, Geophysical Journal International, 194, 417–449, doi: 10.1093/gji/ggt095.
Seroussi, H., E. R. Ivins, D. A. Wiens, and J. Bondzio (2017), Influence of a West Antarctic mantle plume on ice sheet basal conditions, Journal of Geophysical Research: Solid Earth, 122(9), 7127–7155, doi: 10.1002/2017JB014423.
Spasojevic, S., M. Gurnis, and R. Sutherland (2010a), Mantle upwellings above slab graveyards linked to the global geoid lows, Nature Geoscience, 3, 435–438, doi: 10.1038/ngeo855.
Spasojevic, S., M. Gurnis, and R. Sutherland (2010b), Inferring mantle properties with an evolving dynamic model of the Antarctica-New Zealand region from the Late Cretaceous, Journal of Geophysical Research, 115, B05402, doi: 10.1029/2009JB006612.
Steinberger, B. (2007), Effect of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface, Physics of the Earth and Planetary Interiors, 164, 2–20, doi: 10.1016/j.pepi.2007.04.021.
Steinberger, B. (2016), Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness, Geophysical Journal International, 205, 604–621, doi: 10.1093/gji/ggw040.
Steinberger, B., and T. H. Torsvik (2010), Toward an explanation for the present and past locations of the poles, Geochemistry, Geophysics, Geosystems, 11, Q06W06, doi: 10.1029/2009GC002889.
Steinberger, B., S. C. Werner, and T. H. Torsvik (2010), Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars, 207, 564–577, doi: 10.1016/j.icarus.2009.12.025.
Steinberger, B., W. Spakman, P. Japsen, and T. H. Torsvik (2015), The key role of global solid Earth processes in the late Cenozoic intensification of Greenland glaciation, Terra Nova, 27, 1–8, doi: 10.1111/ter.12133.
Steinberger, B., C. P. Conrad, A. Osei Tutu, and M. J. Hoggard (2019), On the amplitude of dynamic topography at spherical harmonic degree two, Tectonophysics, 760, 221–228, doi: 10.1016/j.tecto.2017.11.032.
Steinberger, B., S. Rathnayake, and E. Kendall (2021), The Indian Ocean Geoid Low at a plume-slab overpass, Tectonophysics, 817, 229037, doi: 10.1016/j.tecto.2021.229037.
van der Wal, W., P. L. Whitehouse, and E. J. Schrama (2015), Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica, Earth and Planetary Science Letters, 414, 134–143, doi: 10.1016/j.epsl.2015.01.001.
van der Wal, W., V. Barletta, G. Nield, and C. van Calcar (2022), Glacial isostatic adjustment and post-seismic deformation in Antarctica, Geological Society of London, Memoirs, 56, 315–341, doi: 10.1144/M56-2022-13.
van Wyk de Vries, M., R. G. Bingham, and A. S. Hein (2018), A new volcanic province: an inventory of subglacial volcanoes in West Antarctica, Geological Society of London, Special Publications, 461, 231–248, doi: 10.1144/SP461.7.
Weertman, J. (1974), Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciology, 13, 3–11, doi: 10.3189/S0022143000023327.
Wiens, D. A., W. Shen, and A. J. Lloyd (2021), The seismic structure of the Antarctic upper mantle, Geological Society of London, Memoirs, 56, 195–212, doi: 10.1144/M56-2020-18.