Mechanical Analysis of Fault Slip Rate Sites within the San Gorgonio Pass Region, Southern California USA

Main Article Content

Jennifer Hatch
Michele Cooke
Hanna Elston

Abstract

Earthquake hazard assessments rely on observations from the field and geophysical data that provide fault slip rate estimates at specific sites and inform the geometry of active faults; however, uncertainty remains for both slip rate and geometry. Furthermore, incompatibilities between inferred fault geometry and geologic slip rates arise within crustal deformation models where model and geologic slip rates disagree. The impact of these incompatibilities may be local to sites or have wider effect on the fault system deformation. Here, we investigate the roles of structural position of sites and uncertainty of slip rates using three-dimensional mechanical models that simulate deformation across many earthquake cycles along southern San Andreas fault near the San Gorgonio Pass in California. Within the models, the impact of strike-slip rate sites on the fault system depends on their structural positions. Slip rates at sites along short and segmented faults has lesser impact on the slip along the fault system than either slip rates at sites along longer faults or at sites within fault branches. Consequently, inaccuracies in the slip rate estimates used for seismic hazard assessment may have differing impacts on the fault system depending on location and structural position of the slip rates. Fault branches along strike-slip faults warrant detailed investigation not only because these areas have high spatial variability of slip rate and accrue nearby off-fault deformation but also because changes in slip rates along branches has larger impact on deformation along fault system than other sites. Lack of data or large uncertainty in slip rate data from fault branches can affect our ability to accurately assess seismic hazard of the region.

Article Details

How to Cite
Hatch, J., Cooke, M., & Elston, H. (2023). Mechanical Analysis of Fault Slip Rate Sites within the San Gorgonio Pass Region, Southern California USA. τeκτoniκa, 1(1), 127–145. https://doi.org/10.55575/tektonika2023.1.1.38
Section
Articles

References

Becker, T. W., J. L. Hardebeck, and G. Anderson (2005), Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions, Geophysical Journal International, 160(2), 634–650, doi: 10.1111/j.1365- 246X.2004.02528.x.

Behr, W. M., D. H. Rood, K. E. Fletcher, N. Guzman, R. Finkel, T. C. Hanks, K. W. Hudnut, K. J. Kendrick, J. P. Platt, W. D. Sharp, R. J. Weldon, and J. D. Yule (2010), Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California, GSA Bulletin, 122(9-10), 1360–1377, doi: 10.1130/B30020.1.

Beyer, J., M. L. Cooke, and S. T. Marshall (2018), Sensitivity of deformation to activity along the Mill Creek and Mission Creek strands of the southern San Andreas fault, Geosphere, 14(6), 2296–2310, doi: 10.1130/GES01666.1.

Blisniuk, K., K. Scharer, W. D. Sharp, R. Burgmann, C. Amos, and M. Rymer (2021), A revised position for the primary strand of the Pleistocene-Holocene San Andreas fault in southern California, Science advances, 7(13), doi: 10.1126/sciadv.aaz5691.

Comninou, M., and J. Dundurs (1975), The angular dislocation in a half space, Journal Of Elasticity, 5(3-4), 203–216, doi: 10.1007/bf00126985.

Cooke, M. L., and L. C. Dair (2011), Simulating the recent evolution of the southern big bend of the San Andreas fault, Southern California, Journal of geophysical research, 116(B4), doi: 10.1029/2010jb007835.

Cooke, M. L., M. T. Schottenfeld, and S. W. Buchanan (2013), Evolution of fault efficiency at restraining bends within wet kaolin analog experiments, Journal of Structural Geology, 51, 180–192, doi: 10.1016/j.jsg.2013.01.010.

Cooke, M. L., K. Toeneboehn, and J. L. Hatch (2020), Onset of slip partitioning under oblique convergence within scaled physical experiments, Geosphere, 16(3), 875–889, doi: 10.1130/GES02179.1.

Cowgill, E. (2007), Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth and planetary science letters, 254(3), 239–255, doi: 10.1016/j.epsl.2006.09.015.

Crider, J. G., and D. D. Pollard (1998), Fault linkage: Three-dimensional mechanical interaction between echelon normal faults, Journal of geophysical research, 103(B10), 24,373–24,391, doi: 10.1029/98jb01353.

Dawers, N. H., and M. H. Anders (1995), Displacement-length scaling and fault linkage, Journal of Structural Geology, 17(5), 607–614, doi: 10.1016/0191-8141(94)00091-D.

DeMets, C., R. G. Gordon, and D. F. Argus (2010), Geologically current plate motions, Geophysical Journal International, 181(1), 1–80, doi: 10.1111/j.1365-246X.2009.04491.x.

Di Toro, G., T. Hirose, S. Nielsen, G. Pennacchioni, and T. Shimamoto (2006), Natural and experimental evidence of melt lubrication of faults during earthquakes, Science, 311(5761), 647–649, doi: 10.1126/science.1121012.

Dibblee, T. W. (1964), Geologic map of the San Gorgonio Mountain quadrangle, San Bernardino and Riverside Counties, California, Tech. Rep. I-431, US Geological Survey.

Elliott, D., J. G. Ramsay, and D. S. Wood (1976), A discussion on natural strain and geological structure - the energy balance and deformation mechanisms of thrust sheets, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 283(1312), 289–312, doi: 10.1098/rsta.1976.0086.

Elston, H., M. Cooke, and A. Hatem (2022), Non-steady-state slip rates emerge along evolving restraining bends under constant loading, Geology, 50(5), 532–536, doi: 10.1130/G49745.1.

Fattaruso, L. A., M. L. Cooke, and R. J. Dorsey (2014), Sensitivity of uplift patterns to dip of the San Andreas fault in the Coachella Valley, California, Geosphere, 10(6), 1235–1246, doi: 10.1130/GES01050.1.

Fattaruso, L. A., M. L. Cooke, R. J. Dorsey, and B. A. Housen (2016), Response of deformation patterns to reorganization of the southern San Andreas fault system since ca. 1.5Ma, Tectonophysics, 693, 474–488, doi: 10.1016/j.tecto.2016.05.035.

Fay, N. P., and E. D. Humphreys (2005), Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California, Journal of Geophysical Research, [Solid Earth], 110(B9), doi: 10.1029/2004JB003548.

Field, E. H., G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordan, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon, and Y. Zeng (2015), Long- Term Time-Dependent probabilities for the third uniform california earthquake rupture forecast (UCERF3), Bulletin of the Seismological Society of America, 105(2A), 511–543, doi: 10.1785/0120140093.

Fosdick, J. C., and K. Blisniuk (2018), Sedimentary signals of recent faulting along an old strand of the San Andreas Fault, USA, Scientific reports, 8(1), 12,132, doi: 10.1038/s41598-018-30622-3.

Fuis, G. S., D. S. Scheirer, V. E. Langenheim, and M. D. Kohler (2012), A New Perspective on the Geometry of the San Andreas Fault in Southern California and Its Relationship to Lithospheric Structure, Bulletin of the Seismological Society of America, 102(1), 236–251, doi: 10.1785/0120110041.

Fuis, G. S., K. Bauer, M. R. Goldman, T. Ryberg, V. E. Langenheim, D. S. Scheirer, M. J. Rymer, J. M. Stock, J. A. Hole, R. D. Catchings, R. W. Graves, and B. Aagaard (2017), Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations, Bulletin of the Seismological Society of America, 107(4), 1642–1662, doi: 10.1785/0120160309.

Fumal, T. E., M. J. Rymer, and G. G. Seitz (2002), Timing of Large Earthquakes since A.D. 800 on the Mission Creek Strand of the San Andreas Fault Zone at Thousand Palms Oasis, near Palm Springs, California, Bulletin of the Seismological Society of America, 92(7), 2841–2860, doi: 10.1785/0120000609.

Gabrielov, A., V. Keilis-Borok, and D. D. Jackson (1996), Geometric incompatibility in a fault system, Proceedings of the National Academy of Sciences of the United States of America, 93(9), 3838–3842, doi: 10.1073/pnas.93.9.3838.

Gold, P. O., W. M. Behr, D. Rood, W. D. Sharp, T. K. Rockwell, K. Kendrick, and A. Salin (2015), Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California, Journal of Geophysical Research, [Solid Earth], 120(8), 5639–5663, doi: 10.1002/2015jb012004.

Gold, R. D., E. Cowgill, J. R. Arrowsmith, J. Gosse, X. Chen, and X.-F. Wang (2009), Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China, Journal of geophysical research, 114(B4), doi: 10.1029/2008jb005913.

Goldsby, D. L., and T. E. Tullis (2011), Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, 334(6053), 216–218, doi: 10.1126/science.1207902.

Gratier, J.-P., F. Renard, and P. Labaume (1999), How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner, Journal of Structural Geology, 21(8), 1189–1197, doi: 10.1016/S0191-8141(99)00035-8.

Harden, J. W., and J. C. Matti (1989), Holocene and late Pleistocene slip rates on the San Andreas fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology, GSA Bulletin, 101(9), 1107–1117, doi: 10.1130/0016- 7606(1989)101<1107:HALPSR>2.3.CO;2.

Hatem, A. E., M. L. Cooke, and E. H. Madden (2015), Evolving efficiency of restraining bends within wet kaolin analog experiments, Journal of Geophysical Research, [Solid Earth], 120(3), 1975–1992, doi: 10.1002/2014jb011735.

Hatem, A. E., M. L. Cooke, and K. Toeneboehn (2017), Strain localization and evolving kinematic efficiency of initiating strike- slip faults within wet kaolin experiments, Journal of Structural Geology, 101, 96–108, doi: 10.1016/j.jsg.2017.06.011.

Hatem, A. E., J. F. Dolan, R. W. Zinke, R. M. Langridge, C. P. McGuire, E. J. Rhodes, N. Brown, and R. J. Van Dissen (2020), Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault, Geosphere, 16(6), 1558–1584, doi: 10.1130/GES02263.1.

Heermance, R. V., and D. Yule (2017), Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California, Geophysical research letters, 44(11), 5391–5400, doi: 10.1002/2017GL072612.

Herbert, J. W., and M. L. Cooke (2012), Sensitivity of the Southern San Andreas Fault System to Tectonic Boundary Conditions and Fault Configurations, Bulletin of the Seismological Society of America, 102(5), 2046–2062, doi: 10.1785/0120110316.

Herbert, J. W., M. L. Cooke, and S. T. Marshall (2014), Influence of fault connectivity on slip rates in southern California: Potential impact on discrepancies between geodetic derived and geologic slip rates, Journal of Geophysical Research, [Solid Earth], 119(3), 2342–2361, doi: 10.1002/2013JB010472.

Kendrick, K. J., J. C. Matti, and S. A. Mahan (2015), Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching, GSA Bulletin, 127(5-6), 825–849, doi: 10.1130/B31101.1.

Lin, G. (2013), Three-Dimensional Seismic Velocity Structure and Precise Earthquake Relocations in the Salton Trough, Southern California, Bulletin of the Seismological Society of America, 103(5), 2694–2708, doi: 10.1785/0120120286.

Lindsey, E. O., and Y. Fialko (2013), Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry, Journal of Geophysical Research, [Solid Earth], 118(2), 689–697, doi: 10.1029/2012JB009358.

Madden, E. H., M. L. Cooke, and J. McBeck (2017), Energy budget and propagation of faults via shearing and opening using work optimization, Journal of Geophysical Research, [Solid Earth], 122(8), 6757–6772, doi: 10.1002/2017jb014237.

Marshall, S. T., M. L. Cooke, and S. E. Owen (2009), Interseismic deformation associated with three-dimensional faults in the greater Los Angeles region, California, Journal of geophysical research, 114(B12), doi: 10.1029/2009jb006439.

Matti, J. C., and D. M. Morton (1993), Chapter 2: Paleogeographic evolution of the san andreas fault in southern california: A reconstruction based on a new cross-fault correlation, in The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, vol. 178, edited by R. E. Powell, R. J. Weldon, II, and J. C. Matti, The Geological Society of America, doi: 10.1130/MEM178-p107.

Matti, J. C., D. M. Morton, and B. F. Cox (1985), Distribution and geologic relations of fault systems in the vicinity of the central Transverse Ranges, Southern California, Tech. Rep. 85-365, U.S. Geological Survey, doi: 10.3133/ofr85365.

McBeck, J. A., M. L. Cooke, J. W. Herbert, B. Maillot, and P. Souloumiac (2017), Work optimization predicts accretionary faulting: An integration of physical and numerical experiments, Journal of Geophysical Research, [Solid Earth], 122(9), 7485–7505, doi: 10.1002/2017jb013931.

McGill, S. F., L. A. Owen, R. J. Weldon, and K. J. Kendrick (2013), Latest Pleistocene and Holocene slip rate for the San Bernardino strand of the San Andreas fault, Plunge Creek, Southern California: Implications for strain partitioning within the southern San Andreas fault system for the last ∼35 k.y, GSA Bulletin, 125(1-2), 48–72, doi: 10.1130/B30647.1.

McGill, S. F., L. A. Owen, R. J. Weldon, K. J. Kendrick, and R. J. Burgette (2021), Latest Quaternary slip rates of the San Bernardino strand of the San Andreas fault, southern California, from Cajon Creek to Badger Canyon, Geosphere, 17(5), 1354–1381, doi: 10.1130/GES02231.1.

McPhillips, D., and K. M. Scharer (2018), Quantifying uncertainty in cumulative surface slip along the cucamonga fault, a crustal thrust fault in southern California, Journal of Geophysical Research, [Solid Earth], 123(10), 9063–9083, doi: 10.1029/2018jb016301.

Meade, B. J., and B. H. Hager (2005), Block models of crustal motion in southern California constrained by GPS measurements, Journal of Geophysical Research, [Solid Earth], 110(B3), doi: 10.1029/2004JB003209.

Morell, K. D., R. Styron, M. Stirling, J. Griffin, R. Archuleta, and T. Onur (2020), Seismic hazard analyses from geologic and geomorphic data: Current and future challenges, Tectonics, 39(10), doi: 10.1029/2018tc005365.

Muñoz Zapata, J. J. (2017), Holocene geologic slip rate for the Mission Creek strand of the southern San Andreas fault, Indio Hills, Ph.D. thesis, University of Texas at Austin, doi: 10.15781/T2NP1X18Q.

Orozco, A. A. (2004), Offset of a Mid-Holocene Alluvial Fan Near Banning, CA: Constraints on the Slip Rate of the San Bernardino Strand of the San Andreas Fault, Master’s thesis, California State University, Northridge.

Plesch, A., J. H. Shaw, C. Benson, W. A. Bryant, S. Carena, M. Cooke, J. Dolan, G. Fuis, E. Gath, L. Grant, E. Hauksson, T. Jordan, M. Kamerling, M. Legg, S. Lindvall, H. Magistrale, C. Nicholson, N. Niemi, M. Oskin, S. Perry, G. Planansky, T. Rockwell, P. Shearer, C. Sorlien, M. Peter Süss, J. Suppe, J. Treiman, and R. Yeats (2007), Community Fault Model (CFM) for Southern California, Bulletin of the Seismological Society of America, 97(6), 1793–1802, doi: 10.1785/0120050211.

Prush, V. B., and M. E. Oskin (2020), A mechanistic erosion model for cosmogenic nuclide inheritance in single-clast exposure ages, Earth and planetary science letters, 535, 116,066, doi: 10.1016/j.epsl.2020.116066.

Rittase, W. M., E. Kirby, E. McDonald, J. Douglas Walker, J. Gosse, J. Q. G. Spencer, and A. J. Herrs (2014), Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California, Lithosphere, 6(1), 48–58, doi: 10.1130/L286.1.

Ross, Z. E., E. Hauksson, and Y. Ben-Zion (2017), Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone, Science advances, 3(3), e1601,946, doi: 10.1126/sciadv.1601946.

Scharer, K. M., D. W. Burbank, J. Chen, R. J. Weldon, C. Rubin, R. Zhao, and J. Shen (2004), Detachment folding in the Southwestern Tian Shan–Tarim foreland, China: shortening estimates and rates, Journal of Structural Geology, 26(11), 2119–2137, doi: 10.1016/j.jsg.2004.02.016.

Sharp, R. V. (1981), Variable rates of Late Quaternary strike slip on the San Jacinto Fault Zone, southern California, Journal of geophysical research, 86(B3), 1754, doi: 10.1029/jb086ib03p01754.

Shaw, J. H., A. Plesch, C. Tape, M. P. Suess, T. H. Jordan, G. Ely, E. Hauksson, J. Tromp, T. Tanimoto, R. Graves, K. Olsen, C. Nicholson, P. J. Maechling, C. Rivero, P. Lovely, C. M. Brankman, and J. Munster (2015), Unified structural representation of the southern California crust and upper mantle, Earth and planetary science letters, 415, 1–15, doi: 10.1016/j.epsl.2015.01.016.

Styron, R. (2019), The impact of earthquake cycle variability on neotectonic and paleoseismic slip rate estimates, Solid earth, 10(1), 15–25, doi: 10.5194/se-10-15-2019.

Thomas, A. L. (1993), POLU3D : A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth’s crust, Master’s thesis, Stanford University.

Titus, S. J., S. Crump, Z. McGuire, E. Horsman, and B. Housen (2011), Using vertical axis rotations to characterize off-fault deformation across the San Andreas fault system, central California, Geology, 39(8), 711–714, doi: 10.1130/G31802.1.

Weldon, R. J., and K. E. Sieh (1985), Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas fault, Cajon Pass, southern California, GSA Bulletin, 96(6), 793–812, doi: 10.1130/0016- 7606(1985)96<793:HROSAT>2.0.CO;2.

Wisely, B. A., and D. Schmidt (2010), Deciphering vertical deformation and poroelastic parameters in a tectonically active fault-bound aquifer using InSAR and well level data, San Bernardino basin, California, Geophysical Journal International, 181(3), 1185–1200, doi: 10.1111/j.1365-246X.2010.04568.x.

Yule, D., and K. Sieh (2003), Complexities of the San Andreas fault near San Gorgonio Pass: Implications for large earthquakes, Journal of Geophysical Research, [Solid Earth], 108(B11), doi: 10.1029/2001JB000451.

Zinke, R., J. F. Dolan, E. J. Rhodes, R. Van Dissen, and C. P. McGuire (2017), Highly variable latest Pleistocene-Holocene incremental slip rates on the awatere fault at saxton river, south island, New Zealand, revealed by lidar mapping and luminescence dating, Geophysical research letters, 44(22), 11,301–11,310, doi: 10.1002/2017gl075048.