Upper-plate Shortening and Mountain-building in the Context of Mantle-driven Oceanic Subduction

Main Article Content

Tania Habel
Anne Replumaz
Benjamin Guillaume
Martine Simoes
Jean-Jacques Kermarrec
Robin Lacassin


 The mechanisms controlling mountain building at subduction zones remain debated. In particular the interaction between mantle flow and subduction has been poorly addressed while fundamental in controlling plate displacement and deformation. Here, we conduct three-dimensional analogue models at the scale of the upper mantle adding a horizontal mantle flow, so that plate displacement is not imposed as in most models, but is rather controlled by the balance of forces. We simulate three scenarios: no mantle flow (slab-pull driven subduction), mantle flow directed toward the subducting plate, and mantle flow directed toward the overriding plate. In that last scenario, we test the influence of pre-existing rheological contrasts in the upper plate to best reproduce natural cases where structural and rheological inheritance is common. Our experiments show that when plate convergence is also driven by a background mantle flow, the continental plate deforms with significant trench-orthogonal shortening (up to 30% after 60 Myr), generally associated with thickening. The upper plate shortening and thickening is best promoted when the mantle flow is directed toward the fixed overriding continental plate. The strength of the upper plate is also a key factor controlling the amount and rates of accommodated shortening. Deformation rates increase linearly with decreasing bulk strength of the upper plate, and deformation is mostly localized where viscosity is lower. Finally, we discuss the limits and strengths of our model results through a comparison to the Andes which are the best modern example of mountain building in a subduction context.

Article Details

How to Cite
Habel, T., Replumaz, A., Guillaume, B., Simoes, M., Kermarrec, J.-J., & Lacassin, R. (2023). Upper-plate Shortening and Mountain-building in the Context of Mantle-driven Oceanic Subduction. τeκτoniκa, 1(2), 158–176. https://doi.org/10.55575/tektonika2023.1.2.39


Armijo, R., R. Rauld, R. Thiele, G. Vargas, J. Campos, R. Lacassin, and E. Kausel (2010), The west andean thrust, the san ramon fault, and the seismic hazard for santiago, chile, Tectonics, 29(2), doi: 10.1029/2008tc002427.

Armijo, R., R. Lacassin, A. Coudurier-Curveur, and D. Carrizo (2015), Coupled tectonic evolution of andean orogeny and global climate, Earth-Science Reviews, 143, 1–35, doi: 10.1016/j.earscirev.2015.01.005.

Barnes, J., and T. Ehlers (2009), End member models for andean plateau uplift, Earth-Science Reviews, 97(1-4), 105–132, doi: 10.1016/j.earscirev.2009.08.003.

Brace, W. F., and D. Kohlstedt (1980), Limits on lithospheric stress imposed by laboratory experiments, Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252, doi: 10.1029/jb085ib11p06248.

Brooks, B. A., M. Bevis, K. Whipple, J. Ramon Arrowsmith, J. Foster, T. Zapata, E. Kendrick, E. Minaya, A. Echalar, M. Blanco, et al. (2011), Orogenic-wedge deformation and potential for great earthquakes in the central andean backarc, Nature Geoscience, 4(6), 380–383, doi: 10.1038/ngeo1143.

Buelow, E., J. Suriano, J. Mahoney, D. Kimbrough, J. F. Mescua, L. B. Giambiagi, and G. D. Hoke (2018), Sedimentologic and stratigraphic evolution of the cacheuta basin: Constraints on the development of the miocene retroarc foreland basin, south-central andes, Lithosphere, 10(3), 366–391, doi: 10.1130/l709.1.

Buffett, B. A. (2006), Plate force due to bending at subduction zones, Journal of Geophysical Research: Solid Earth, 111(B9), doi: 10.1029/2006jb004295.

Capitanio, F., C. Faccenna, S. Zlotnik, and D. Stegman (2011), Subduction dynamics and the origin of andean orogeny and the bolivian orocline, Nature, 480(7375), 83–86, doi: 10.1038/nature10596.

Cardozo, N., and R. W. Allmendinger (2009), Sspx: A program to compute strain from displacement/velocity data, Computers & Geosciences, 35(6), 1343–1357, doi: 10.1016/j.cageo.2008.05.008.

Cerpa, N. G., R. Hassani, M. Gerbault, and J.-H. Prévost (2014), A fictitious domain method for lithosphere-asthenosphere interaction: Application to periodic slab folding in the upper mantle, Geochemistry, Geophysics, Geosystems, 15(5), 1852–1877, doi: 10.1002/2014gc005241.

Cerpa, N. G., B. Guillaume, and J. Martinod (2018), The interplay between overriding plate kinematics, slab dip and tectonics, Geophysical Journal International, 215(3), 1789–1802, doi: 10.1093/gji/ggy365.

Chase, C. G. (1978), Extension behind island arcs and motions relative to hot spots, Journal of Geophysical Research: Solid Earth, 83(B11), 5385–5387, doi: 10.1029/jb083ib11p05385.

Chen, Y.-W., J. Wu, and J. Suppe (2019), Southward propagation of nazca subduction along the andes, Nature, 565, 441–447, doi: 10.1038/s41586-018-0860-1.

Conrad, C. P., and B. H. Hager (1999), Effects of plate bending and fault strength at subduction zones on plate dynamics, Journal of Geophysical Research: Solid Earth, 104(B8), 17,551–17,571, doi: 10.1029/1999JB900149.

Davy, P., and P. Cobbold (1991), Experiments on shortening of a 4-layer model of the continental lithosphere, Tectonophysics, 188(1-2), 1–25, doi: 10.1016/0040-1951(91)90311-f.

DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophysical research letters, 21(20), 2191–2194, doi: 10.1029/94gl02118.

Dewey, J. F. (1980), Episodicity, sequence and style at convergent plate boundaries, in The continental crust and its mineral deposits, Geological Association of Canada Special paper, vol. 20, edited by D. W. Strangway, pp. 553–573.

Duarte, J. C., W. P. Schellart, and A. R. Cruden (2014), Rheology of petrolatum–paraffin oil mixtures: applications to analogue modelling of geological processes, Journal of Structural Geology, 63, 1–11, doi: 10.1016/j.jsg.2014.02.004.

Duarte, J. C., W. P. Schellart, and A. R. Cruden (2015), How weak is the subduction zone interface?, Geophysical Research Letters, 42(8), 2664–2673, doi: 10.1002/2014gl062876.

Dvorkin, J., A. Nur, G. Mavko, and Z. Ben-Avraham (1993), Narrow subducting slabs and the origin of backarc basins, Tectonophysics, 227(1-4), 63–79, doi: 10.1016/0040-1951(93)90087-Z.

Eichelberger, N., N. McQuarrie, T. A. Ehlers, E. Enkelmann, J. B. Barnes, and R. O. Lease (2013), New constraints on the chronology, magnitude, and distribution of deformation within the central andean orocline, Tectonics, 32(5), 1432–1453, doi: 10.1002/tect.20073.

Elger, K., O. Oncken, and J. Glodny (2013), Plateau-style accumulation of deformation: Southern altiplano, Tectonics, 24(4), TC4020, doi: 10.1029/2004TC001675.

England, P., and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophysical Journal International, 70(2), 295–321, doi: 10.1111/j.1365-246x.1982.tb04969.x.

Faccenna, C., T. W. Becker, C. P. Conrad, and L. Husson (2013), Mountain building and mantle dynamics, Tectonics, 32(1), 80–93, doi: 10.1029/2012TC003176.

Faccenna, C., O. Oncken, A. F. Holt, and T. W. Becker (2017), Initiation of the andean orogeny by lower mantle subduction, Earth and Planetary Science Letters, 463, 189–201, doi: 10.1016/j.epsl.2017.01.041.

Funiciello, F., C. Faccenna, D. Giardini, and K. Regenauer-Lieb (2003), Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments, Journal of Geophysical Research: Solid Earth, 108(B4), doi: 10.1029/2001JB000896.

Funiciello, F., C. Faccenna, and D. Giardini (2004), Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments, Geophysical Journal International, 157(3), 1393–1406, doi: 10.1111/j.1365-246X.2004.02313.x.

Garfunkel, Z., C. Anderson, and G. Schubert (1986), Mantle circulation and the lateral migration of subducted slabs, Journal of Geophysical Research: Solid Earth, 91(B7), 7205–7223, doi: 10.1029/JB091iB07p07205.

Gibert, G., M. Gerbault, R. Hassani, and E. Tric (2012), Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling, Geophysical Journal International, 189(2), 747–760, doi: 10.1111/j.1365-246x.2012.05426.x.

Guillaume, B., J. Martinod, and N. Espurt (2009), Variations of slab dip and overriding plate tectonics during subduction: Insights from analogue modelling, Tectonophysics, 463(1-4), 167–174, doi: 10.1016/j.tecto.2008.09.043.

Guillaume, B., S. Hertgen, J. Martinod, and N. G. Cerpa (2018), Slab dip, surface tectonics: How and when do they change following an acceleration/slow down of the overriding plate?, Tectonophysics, 726, 110–120, doi: 10.1016/j.tecto.2018.01.030.

Guillaume, B., F. Funiciello, and C. Faccenna (2021), Interplays between mantle flow and slab pull at subduction zones in 3d, Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021,574, doi: 10.1029/2020jb021574.

Habel, T. (2022), Contribution of the west andean flank in northern chile to early stages of the andean orogeny: Insights from structural geology, thermochronology and analog modeling, Ph.D. thesis.

Hayes, G. P., G. L. Moore, D. E. Portner, M. Hearne, H. Flamme, M. Furtney, and G. M. Smoczyk (2018), Slab2, a comprehensive subduction zone geometry model, Science, 362(6410), 58–61, doi: 10.1126/science.aat4723.

Heuret, A., and S. Lallemand (2005), Plate motions, slab dynamics and back-arc deformation, Physics of the Earth and Planetary Interiors, 149(1-2), 31–51, doi: 10.1016/j.pepi.2004.08.022.

Holt, A. F., T. Becker, and B. Buffett (2015), Trench migration and overriding plate stress in dynamic subduction models,

Geophysical Journal International, 201(1), 172–192, doi: 10.1093/gji/ggv011.

Horton, B. K. (2018), Tectonic regimes of the central and southern andes: Responses to variations in plate coupling during subduction, Tectonics, 37(2), 402–429, doi: 10.1002/2017tc004624.

Horton, B. K., T. N. Capaldi, and N. D. Perez (2022), The role of flat slab subduction, ridge subduction, and tectonic inheritance in andean deformation, Geology, 50(9), 1007–1012, doi: 10.1130/G50094.1.

Husson, L. (2012), The dynamics of plate boundaries over a convecting mantle, Physics of the Earth and Planetary Interiors, 212, 32–43, doi: 10.1016/j.pepi.2012.09.006.

Husson, L., C. P. Conrad, and C. Faccenna (2012), Plate motions, andean orogeny, and volcanism above the south atlantic convection cell, Earth and Planetary Science Letters, 317, 126–135, doi: 10.1016/j.epsl.2011.11.040.

Jaillard, E., G. Hérail, T. Monfret, E. Díaz-Martínez, P. Baby, A. Lavenu, J.-F. Dumont, U. Cordani, E. Milani, D. Campos, et al. (2000), Tectonic evolution of the andes of ecuador, peru, bolivia and northern chile, in Tectonic evolution of South America, edited by U. G. Cordani, E. J. Milani, A. Thomaz Filho, and D. A. Campos, 31st International Geological Congress, pp. 481–559, Rio de Janeiro, Brazil.

Király, Á., F. A. Capitanio, F. Funiciello, and C. Faccenna (2017), Subduction induced mantle flow: Length-scales and orientation of the toroidal cell, Earth and Planetary Science Letters, 479, 284–297, doi: 10.1016/j.epsl.2017.09.017.

Kley, J., and C. R. Monaldi (1998), Tectonic shortening and crustal thickness in the central andes: How good is the correlation?, Geology, 26(8), 723–726, doi: 10.1130/0091-7613(1998)026<0723:tsacti>2.3.co;2.

Lallemand, S., A. Heuret, and D. Boutelier (2005), On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones, Geochemistry, Geophysics, Geosystems, 6(9), doi: 10.1029/2005gc000917.

Lamb, S. (2011), Did shortening in thick crust cause rapid late cenozoic uplift in the northern bolivian andes?, Journal of the Geological Society, 168(5), 1079–1092, doi: 10.1144/0016-76492011-008.

Lossada, A. C., G. D. Hoke, L. B. Giambiagi, P. Fitzgerald, J. F. Mescua, J. Suriano, and A. Aguilar (2020), Detrital thermochronology reveals major middle miocene exhumation of the eastern flank ofthe andes that predates the pampeanflat slab (33–33.5 s), Tectonics, 39(4), e2019TC005,764, doi: 10.1029/2019tc005764.

Martinod, J., F. Funiciello, C. Faccenna, S. Labanieh, and V. Regard (2005), Dynamical effects of subducting ridges: insights from 3-d laboratory models, Geophysical Journal International, 163(3), 1137–1150, doi: 10.1111/j.1365-246x.2005.02797.x.

Martinod, J., L. Husson, P. Roperch, B. Guillaume, and N. Espurt (2010), Horizontal subduction zones, convergence velocity and the building of the andes, Earth and Planetary Science Letters, 299(3-4), 299–309, doi: 10.1016/j.epsl.2010.09.010.

Martinod, J., B. Guillaume, N. Espurt, C. Faccenna, F. Funiciello, and V. Regard (2013), Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling, Tectonophysics, 588, 39–55, doi: 10.1016/j.tecto.2012.12.010.

Martinod, J., M. Gérault, L. Husson, and V. Regard (2020), Widening of the andes: An interplay between subduction dynamics and crustal wedge tectonics, Earth-Science Reviews, 204, 103,170, doi: 10.1016/j.earscirev.2020.103170.

McQuarrie, N. (2002), The kinematic history of the central andean fold-thrust belt, bolivia: Implications for building a high plateau, Geological Society of America Bulletin, 114(8), 950–963, doi: 10.1130/0016-7606(2002)114<0950:tkhotc>2.0.co;2.

McQuarrie, N., B. K. Horton, G. Zandt, S. Beck, and P. G. DeCelles (2005), Lithospheric evolution of the andean fold–thrust belt, bolivia, and the origin of the central andean plateau, Tectonophysics, 399(1-4), 15–37, doi: 10.1016/j.tecto.2004.12.013.

Meyer, C., and W. P. Schellart (2013), Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction, Journal of Geophysical Research: Solid Earth, 118(2), 775–790, doi: 10.1002/jgrb.50078.

Mitrovica, J., and A. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth and Planetary Science Letters, 225(1-2), 177–189, doi: 10.1016/j.epsl.2004.06.005.

Molnar, P., and T. Atwater (1978), Interarc spreading and cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere, Earth and Planetary Science Letters, 41(3), 330–340, doi: 10.1016/0012-821x(78)90187-5.

Mpodozis, C., and V. Ramos (1990), The andes of chile and argentina, in Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, edited by G. E. Ericksen, M. T. Cañas Pinochet, and J. A. Reinemund, Circum-Pacific Council for Energy and Mineral Resources Earth Sciences Series, pp. 59–90, Circum Pacific Council Publications, Houston, Texas.

Müller, R. D., M. Seton, S. Zahirovic, S. E. Williams, K. J. Matthews, N. M. Wright, G. E. Shephard, K. T. Maloney, N. Barnett-Moore, M. Hosseinpour, et al. (2016), Ocean basin evolution and global-scale plate reorganization events since pangea breakup, Annual Review of Earth and Planetary Sciences, 44, 107–138, doi: 10.1146/annurev-earth-060115-012211.

Oncken, O., D. Hindle, J. Kley, K. Elger, P. Victor, and K. Schemmann (2006), Deformation of the central andean upper plate system — facts, fiction, and constraints for plateau models, in The Andes: Active Subduction Orogeny, edited by O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V. A. Ramos, M. R. Strecker, and P. Wigger, pp. 3–27, Springer, Berlin, Germany, doi: 10.1007/978-3-540-48684-8_1.

O’Neill, C., D. Müller, and B. Steinberger (2005), On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames, Geochemistry, Geophysics, Geosystems, 6(4), Q04,003, doi: 10.1029/2004GC000784.

Quinteros, J., and S. V. Sobolev (2013), Why has the nazca plate slowed since the neogene?, Geology, 41(1), 31–34, doi: 10.1130/g33497.1.

Ramos, V. A., E. O. Cristallini, and D. J. Pérez (2002), The pampean flat-slab of the central andes, Journal of South American earth sciences, 15(1), 59–78, doi: 10.1016/S0895-9811(02)00006-8.

Ranalli, G. (1995), Rheology of the Earth, Springer Science & Business Media.

Replumaz, A., F. Funiciello, R. Reitano, C. Faccenna, and M. Balon (2016), Asian collisional subduction: A key process driving formation of the tibetan plateau, Geology, 44(11), 943–946, doi: 10.1130/G38276.1.

Richards, M. A., and D. C. Engebretson (1992), Large-scale mantle convection and the history of subduction, Nature, 355(6359), 437–440, doi: 10.1038/355437a0.

Rudolf, M., D. Boutelier, M. Rosenau, G. Schreurs, and O. Oncken (2016), Rheological benchmark of silicone oils used for analog modeling of short-and long-term lithospheric deformation, Tectonophysics, 684, 12–22, doi: 10.1016/j.tecto.2015.11.028.

Russo, R., and P. Silver (1994), Trench-parallel flow beneath the nazca plate from seismic anisotropy, Science, 263(5150), 1105–1111, doi: 10.1126/science.263.5150.1105.

Schellart, W. P. (2008), Overriding plate shortening and extension above subduction zones: A parametric study to explain formation of the andes mountains, Geological Society of America Bulletin, 120(11-12), 1441–1454, doi: 10.1130/B26360.1.

Schellart, W. P. (2011), Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes, Journal of Structural Geology, 33(6), 1079–1088, doi: 10.1016/j.jsg.2011.03.013.

Schellart, W. P. (2017), Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow, Nature communications, 8(1), 2010, doi: 10.1038/s41467-017-01847-z.

Schellart, W. P., and L. Moresi (2013), A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate, Journal of Geophysical Research: Solid Earth, 118(6), 3221–3248, doi: 10.1002/jgrb.50173.

Schellart, W. P., J. Freeman, D. R. Stegman, L. Moresi, and D. May (2007), Evolution and diversity of subduction zones controlled by slab width, Nature, 446(7133), 308–311, doi: 10.1038/nature05615.

Sheffels, B. M. (1990), Lower bound on the amount of crustal shortening, in the central bolivian andes, Geology, 18(9), 812–815, doi: 10.1130/0091-7613(1990)018<0812:lbotao>2.3.co;2.

Silver, P. G., R. M. Russo, and C. Lithgow-Bertelloni (1998), Coupling of south american and african plate motion and plate deformation, Science, 279(5347), 60–63, doi: 10.1126/science.279.5347.60.

Sobolev, S. V., and A. Y. Babeyko (2005), What drives orogeny in the andes?, Geology, 33(8), 617–620, doi: 10.1130/g21557ar.1.

Strak, V., and W. P. Schellart (2016), Control of slab width on subduction-induced upper mantle flow and associated upwellings: Insights from analog models, Journal of Geophysical Research: Solid Earth, 121(6), 4641–4654, doi: 10.1002/2015jb012545.

Turcotte, D. L., and G. Schubert (2002), Geodynamics, Cambridge university press.

Uyeda, S., and H. Kanamori (1979), Back-arc opening and the mode of subduction, Journal of Geophysical Research: Solid Earth, 84(B3), 1049–1061, doi: 10.1029/jb084ib03p01049.

Wölbern, I., B. Heit, X. Yuan, G. Asch, R. Kind, J. Viramonte, S. Tawackoli, and H. Wilke (2009), Receiver function images from the moho and the slab beneath the altiplano and puna plateaus in the central andes, Geophysical Journal International, 177(1), 296–308, doi: 10.1111/j.1365-246x.2008.04075.x.

Wolf, S. G., and R. S. Huismans (2019), Mountain building or backarc extension in ocean-continent subduction systems: A function of backarc lithospheric strength and absolute plate velocities, Journal of Geophysical Research: Solid Earth, 124(7), 7461–7482, doi: 10.1029/2018jb017171.

Zhong, S., and M. Gurnis (1994), Controls on trench topography from dynamic models of subducted slabs, Journal of Geophysical Research: Solid Earth, 99(B8), 15,683–15,695, doi: 10.1029/94JB00809.