Kinematic Evolution of the Tangra Yumco Rift, South-Central Tibet

Main Article Content

Aislin Reynolds
Andrew Laskowski
Caden Howlett
Devon Orme
Kurt Sundell
Michael Taylor
Adam Forte
Spencer Dixon
Fulong Cai
Xudong Guo
Lin Ding


We investigate rifting during continental collision in southern Tibet by testing kinematic models for two classes of rifts: Tibetan rifts are defined as >150 km in length and crosscut the Lhasa Terrane, and Gangdese rifts are <150 km long and isolated within the high topography of the Gangdese Range. Discerning rift kinematics is a crucial step towards understanding rift behavior and evolution that has been historically limited. We evaluate spatiotemporal trends in fault displacement and extension onset in the Tangra Yumco (TYC) rift and several nearby Gangdese rifts and examine how contraction and rift exhumation relate to evolution of the Gangdese drainage divide. Igneous U-Pb and zircon (U-Th)/He (ZHe) results indicate rift footwall crystallization between ~59-49 Ma and cooling between ~60-4 Ma, respectively, with ZHe ages correlating with sample latitude. Samples from Gangdese latitudes (~29.4-29.8°N) yield predominantly Oligocene-early Miocene ages, whereas samples north of ~29.8°N yield both late Miocene-Pliocene ages and Paleocene-Eocene ages. Thermal history models indicate two-stage cooling, with initially slow cooling followed by accelerated cooling during late Miocene-Pliocene time. From spatial distributions of ZHe ages we interpret: (1) ~28-16 Ma ages from Gangdese latitudes reflect exhumation along contractional structures, (2) ~8-4 Ma ages reflect rift-related exhumation, and (3) ~60-48 Ma ages indicate these samples experienced lesser rift exhumation. Our data are consistent with a segment linkage evolution model for the TYC rift, with interactions between rifts and contractional structures likely influencing the evolution of topography and location of the Gangdese drainage divide since Miocene time.

Article Details

How to Cite
Reynolds, A., Laskowski, A., Howlett, C., Orme, D., Sundell, K., Taylor, M., Forte, A., Dixon, S., Cai, F., Guo, X., & Ding, L. (2024). Kinematic Evolution of the Tangra Yumco Rift, South-Central Tibet. τeκτoniκa, 2(1), 190–222.
Author Biographies

Aislin Reynolds, Department of Earth Sciences, Montana State University, Bozeman, MT, USA

PhD Candidate, Department of Earth Sciences, Montana State University

Andrew Laskowski, Department of Earth Sciences, Montana State University, Bozeman, MT, USA

Assistant Professor, Department of Earth Sciences, Montana State University

Caden Howlett, Department of Geosciences, University of Arizona, Tucson, AZ, USA

PhD Candidate, Department of Geosciences, University of Arizona

Devon Orme, Department of Earth Sciences, Montana State University, Bozeman, MT, USA

Assistant Professor, Department of Earth Sciences, Montana State University

Kurt Sundell, Department of Geosciences, Idaho State University, Pocatello, ID, USA

Assistant Professor, Department of Geosciences, Idaho State University

Michael Taylor, Department of Geology, University of Kansas, Lawrence, KS, USA

Professor, Department of Geology, University of Kansas

Adam Forte, Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA, USA

Assistant Professor, Department of Geology & Geophysics, Louisiana State University

Fulong Cai, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Associate Professor, Institute of Tibetan Plateau Research, Chinese Academy of Sciences

Xudong Guo, National Disaster Reduction Center of China (NDRCC), Beijing, China

Institute of Tibetan Plateau Research, Chinese Academy of Sciences

Lin Ding, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Director, Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences


Ai, K., K. Zhang, B. Song, T. Shen, and J. Ji (2022), Upper Oligocene–Lower miocene gangdese conglomerate along the Yarlung-Zangbo suture zone and its implications for Palaeo-Yarlung-Zangbo initiation, Frontiers of Earth Science in China, 10, doi: 10.3389/feart.2022.808843.

Aitchison, J., A. M. Davis, Badengzhu, and H. Luo (2002), New constraints on the India–Asia collision: the lower miocene gangrinboche conglomerates, yarlung tsangpo suture zone, SE tibet, Journal of Asian Earth Sciences, 21(3), 251–263, doi: 10.1016/S1367-9120(02)00037-8.

Allmendinger, R. W. (1986), Tectonic development, southeastern border of the puna plateau, northwestern argentine andes, Geological Society of America bulletin, 97(9), 1070, doi: 10.1130/0016-7606(1986)97<1070:tdsbot>;2.

An, W., X. Hu, E. Garzanti, M. K. BouDagher-Fadel, J. Wang, and G. Sun (2014), Xigaze forearc basin revisited (south tibet): Provenance changes and origin of the xigaze ophiolite, Geological Society of America bulletin, 126(11-12), 1595–1613, doi: 10.1130/b31020.1.

Anders, M. H., and R. W. Schlische (1994), Overlapping faults, intrabasin highs, and the growth of normal faults, The Journal of geology, 102(2), 165–179, doi: 10.1086/629661.

Armijo, R., P. Tapponnier, J. L. Mercier, and T.-L. Han (1986), Quaternary extension in southern tibet: Field observations and tectonic implications, Journal of geophysical research, 91(B14), 13,803–13,872, doi: 10.1029/jb091ib14p13803.

Ault, A., C. Gautheron, and G. King (2019), Innovations in (U–Th)/He, fission track, and trapped charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains, Tectonics, 38(11), 3705–3739, doi: 10.1029/2018TC005312.

Axen, G., J. Fletcher, E. Cowgill, M. Murphy, P. Kapp, I. Macmillan, E. Ramos-Velázquez, and J. Aranda-Gómez (1999), Range-front fault scarps of the sierra el mayor, baja california: Formed above an active low-angle normal fault?, Geology, 27(3), 247–250, doi: 10.1130/0091-7613(1999)027<0247:RFFSOT>2.3.CO;2.

Bian, S., J. Gong, A. Zuza, R. Yang, L. Chen, J. Ji, X. Yu, Y. Tian, Z. Yu, X. Cheng, X. Lin, and H. Chen (2022), Along-strike variation in the initiation timing of the north-trending rifts in southern tibet as revealed from the Yadong-Gulu rift, Tectonics, 41(7), e2021TC007,091, doi: 10.1029/2021TC007091.

Bischoff, S. H., and L. M. Flesch (2018), Normal faulting and viscous buckling in the tibetan plateau induced by a weak lower crust, Nature communications, 9(1), 4952, doi: 10.1038/s41467-018-07312-9.

Black, L. P., S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and Others (2004), Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards, Chemical geology, 205(1-2), 115–140.

Blisniuk, P. M., B. R. Hacker, J. Glodny, L. Ratschbacher, S. Bi, Z. Wu, M. O. McWilliams, and A. Calvert (2001), Normal faulting in central tibet since at least 13.5 myr ago, Nature, 412(6847), 628–632, doi: 10.1038/35088045.

Braun, J. (2003), Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography, Computers & geosciences, 29(6), 787–794, doi: 10.1016/s0098-3004(03)00052-9.

Braun, J., P. van der Beek, P. Valla, X. Robert, F. Herman, C. Glotzbach, V. Pedersen, C. Perry, T. Simon-Labric, and C. Prigent (2012), Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE, Tectonophysics, 524-525, 1–28, doi: 10.1016/j.tecto.2011.12.035.

Brune, S., F. Kolawole, J. Olive, D. S. Stamps, W. Buck, S. Buiter, T. Furman, and D. Shillington (2023), Geodynamics of continental rift initiation and evolution, Nature reviews. Earth & environment, 4(4), 235–253, doi: 10.1038/s43017-023-00391-3.

Buck, W. R. (1988), Flexural rotation of normal faults, Tectonics, 7(5), 959–973, doi: 10.1029/tc007i005p00959.

Buck, W. R. (1991), Modes of continental lithospheric extension, Journal of geophysical research, 96(B12), 20,161–20,178, doi: 10.1029/91jb01485.

Buck, W. R. (1993), Effect of lithospheric thickness on the formation of high- and low-angle normal faults, Geology, 21(10), 933–936, doi: 10.1130/0091-7613(1993)021<0933:EOLTOT>2.3.CO;2.

Burchfiel, B. C., and L. H. Royden (1985), North-south extension within the convergent himalayan region, Geology, 13(10), 679, doi: 10.1130/0091-7613(1985)13<679:newtch>;2.

Burchfiel, B. C., C. Zhiliang, K. V. Hodges, L. Yuping, L. H. Royden, D. Changrong, and X. Jiene (1992), The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt, in The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt, Geological Society of America, doi: 10.1130/SPE269-p1.

Burg, J., F. Proust, P. Tapponnier, and C. Ming (1983), Deformation phases and tectonic evolution of the lhasa block (southern tibet, china), Eclogae Geologicae Helvetiae, 76(3), 643–665.

Burke, W. B., A. Laskowski, D. Orme, K. Sundell, M. Taylor, X. Guo, and L. Ding (2021), Record of crustal thickening and synconvergent extension from the dajiamang tso rift, southern tibet, Géosciences, 11(5), 209, doi: 10.3390/GEOSCIENCES11050209.

Carrapa, B., D. A. Orme, P. G. DeCelles, P. Kapp, M. A. Cosca, and R. Waldrip (2014), Miocene burial and exhumation of the India-Asia collision zone in southern tibet: Response to slab dynamics and erosion, Geology, 42(5), 443–446, doi: 10.1130/g35350.1.

Chevalier, M., P. Tapponnier, J. Woerd, P. Leloup, S. Wang, J. Pan, M. Bai, E. Kali, X. Liu, and H. Li (2019), Late quaternary extension rates across the northern half of the Yadong-Gulu rift: Implication for east-west extension in southern tibet, Journal of Geophysical Research, [Solid Earth], 125(7), e2019JB019,106, doi: 10.1029/2019JB019106.

Cogan, M. J., K. D. Nelson, W. S. F. Kidd, and C. Wu (1998), Shallow structure of the Yadong-Gulu rift, southern tibet, from refraction analysis of project INDEPTH common midpoint data, Tectonics, 17(1), 46–61, doi: 10.1029/97tc03025.

Coleman, M., and K. Hodges (1995), Evidence for tibetan plateau uplift before 14 myr ago from a new minimum age for east–west extension, Nature, 374(6517), 49–52, doi: 10.1038/374049A0.

Copley, A., J.-P. Avouac, and B. P. Wernicke (2011), Evidence for mechanical coupling and strong indian lower crust beneath southern tibet, Nature, 472(7341), 79–81, doi: 10.1038/nature09926.

Corfu, F., J. Hanchar, P. Hoskin, and P. Kinny (2003), Atlas of zircon textures, Reviews in Mineralogy and Geochemistry, 53(1), 469–500, doi: 10.2113/0530469.

Curry, M. A. E., J. B. Barnes, and J. P. Colgan (2016), Testing fault growth models with low-temperature thermochronology in the northwest basin and range, USA, Tectonics, 35(10), 2467–2492, doi: 10.1002/2016tc004211.

DeCelles, P., P. Kapp, J. Quade, and G. Gehrels (2011), Oligocene-Miocene kailas basin, southwestern tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone, Geological Society of America bulletin, 123(7-8), 1337–1362, doi: 10.1130/B30258.1.

DeCelles, P. G., D. M. Robinson, and G. Zandt (2002), Implications of shortening in the himalayan fold-thrust belt for uplift of the tibetan plateau, Tectonics, 21(6), 12–1–12–25, doi: 10.1029/2001tc001322.

DeCelles, P. G., B. Carrapa, G. E. Gehrels, T. Chakraborty, and P. Ghosh (2016), Along-strike continuity of structure, stratigraphy, and kinematic history in the himalayan thrust belt: The view from northeastern india, Tectonics, 35(12), 2995–3027, doi: 10.1002/2016tc004298.

Dodson, M. H. (1973), Closure temperature in cooling geochronological and petrological systems, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 40(3), 259–274, doi: 10.1007/bf00373790.

Dürr, S. B. (1996), Provenance of xigaze fore-arc basin clastic rocks (cretaceous, south tibet), Geological Society of America bulletin, 108(6), 669–684, doi: 10.1130/0016-7606(1996)108<0669:poxfab>;2.

Einsele, G., B. Liu, S. Durr, W. Frisch, G. Liu, H. Luterbacher, L. Ratschbacher, W. Ricken, J. Wendt, A. Wetzel, G. Yu, and H. Zheng (1994), The xigaze forearc basin: evolution and facies architecture (cretaceous, tibet), Sedimentary geology, 90(1-2), 1–32, doi: 10.1016/0037-0738(94)90014-0.

England, P., and G. Houseman (1989), Extension during continental convergence, with application to the tibetan plateau, Journal of geophysical research, 94(B12), 17,561–17,579, doi: 10.1029/jb094ib12p17561.

England, P., and P. Molnar (1990), Surface uplift, uplift of rocks, and exhumation of rocks, Geology, 18(12), 1173, doi: 10.1130/0091-7613(1990)018<1173:suuora>;2.

England, P., and M. Searle (1986), The cretaceous-tertiary deformation of the lhasa block and its implications for crustal thickening in tibet, Tectonics, 5(1), 1–14, doi: 10.1029/tc005i001p00001.

Farley, K. A., R. A. Wolf, and L. T. Silver (1996), The effects of long alpha-stopping distances on (U-Th)/He ages, Geochimica et cosmochimica acta, 60(21), 4223–4229, doi: 10.1016/s0016-7037(96)00193-7.

Faulds, J. E., R. J. Varga, and J. H. Stewart (1998), The role of accommodation zones and transfer zones in the regional segmentation of extended terranes, Special papers-Geological, pp. 1–46.

Fielding, E., B. Isacks, M. Barazangi, and C. Duncan (1994), How flat is tibet?, Geology, 22(2), 163, doi: 10.1130/0091-7613(1994)022<0163:hfit>;2.

Gan, W., P. Zhang, Z.-K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng (2007), Present-day crustal motion within the tibetan plateau inferred from GPS measurements, Journal of geophysical research, 112(B8), doi: 10.1029/2005jb004120.

Gansser, A. (1964), Geology of the Himalayas, Interscience Publishers, a division of John Wiley, London, New York, Sydney (tr. Zurich).

Gao, R., C. Chen, Z. Lu, L. D. Brown, X. Xiong, W. Li, and G. Deng (2013), New constraints on crustal structure and moho topography in central tibet revealed by SinoProbe deep seismic reflection profiling, Tectonophysics, 606, 160–170, doi: 10.1016/j.tecto.2013.08.006.

Gao, T., Z. Ding, X. Wang, and L. Jiang (2021), Joint inversion of receiver functions, rayleigh wave dispersion and ZH ratio for crustal structure in southeast tibetan plateau and its implications for dynamics, Chinese journal of geophysics, 64(6), 1885–1906.

Garzione, C. N., P. G. DeCelles, D. G. Hodkinson, T. P. Ojha, and B. N. Upreti (2003), East-west extension and miocene environmental change in the southern tibetan plateau: Thakkhola graben, central nepal, Geological Society of America bulletin, 115(1), 3–20, doi: 10.1130/0016-7606(2003)115<0003:eweame>;2.

Gehrels, G., V. Valencia, and A. Pullen (2006), Detrital zircon geochronology by laser-ablation multicollector ICPMS at the arizona LaserChron center, The Paleontological Society Papers, 12, 67–76.

Gehrels, G., V. Valencia, and J. Ruíz (2008), Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry, Geochemistry: Exploration, Environment, Analysis, 9(3), doi: 10.1029/2007GC001805.

Gehrels, G., M. Rusmore, G. Woodsworth, M. Crawford, C. Andronicos, L. Hollister, J. Patchett, M. Ducea, R. Butler, K. Klepeis, and Others (2009), U-Th-Pb geochronology of the coast mountains batholith in north-coastal british columbia: Constraints on age and tectonic evolution, Geological Society of America bulletin, 121(9-10), 1341–1361.

Gehrels, G. E. (2009), Age pick program.

Geng, Q.-R., Z.-M. Sun, G.-T. Pan, D.-C. Zhu, and L.-Q. Wang (2009), Origin of the gangdise (transhimalaya) permian arc in southern tibet: Stratigraphic and volcanic geochemical constraints, Island Arc, 18(3), 467–487, doi: 10.1111/j.1440-1738.2009.00664.x.

Giovanni, M. K., B. K. Horton, C. N. Garzione, B. McNulty, and M. Grove (2010), Extensional basin evolution in the cordillera blanca, peru: Stratigraphic and isotopic records of detachment faulting and orogenic collapse in the andean hinterland, Tectonics, 29(6), doi: 10.1029/2010tc002666.

Guenthner, W. R., P. W. Reiners, R. A. Ketcham, L. Nasdala, and G. Giester (2013), Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology, American journal of science, 313(3), 145–198, doi: 10.2475/03.2013.01.

Ha, G., Z. Wu, and F. Liu (2019), Late quaternary vertical slip rates along the southern Yadong–Gulu rift, southern tibetan plateau, Tectonophysics, 755, 75–90, doi: 10.1016/J.TECTO.2019.02.014.

Hager, C., D. F. Stockli, T. J. Dewane, G. Gehrels, and L. Ding (2009), Anatomy and crustal evolution of the central lhasa terrane (S-Tibet) revealed by investigations in the xainza rift, in EGU General Assembly Conference Abstracts, p. 11346.

Han, Z., H. D. Sinclair, Y. Li, C. Wang, Z. Tao, X. Qian, Z. Ning, J. Zhang, Y. Wen, J. Lin, and Others (2019), Internal drainage has sustained low-relief tibetan landscapes since the early miocene, Geophysical research letters, 46(15), 8741–8752.

Harley, S. L., N. M. Kelly, and A. Moller (2007), Zircon behaviour and the thermal histories of mountain chains, Elements, 3(1), 25–30, doi: 10.2113/gselements.3.1.25.

Harrison, T. M., P. Copeland, W. S. F. Kidd, and O. M. Lovera (1995), Activation of the nyainqentanghla shear zone: Implications for uplift of the southern tibetan plateau, Tectonics, 14(3), 658–676, doi: 10.1029/95tc00608.

Harrison, T. M., A. Yin, M. Grove, O. M. Lovera, F. J. Ryerson, and X. Zhou (2000), The zedong window: A record of superposed tertiary convergence in southeastern tibet, Journal of geophysical research, 105(B8), 19,211–19,230, doi: 10.1029/2000jb900078.

He, S., P. Kapp, P. DeCelles, G. Gehrels, and M. Heizler (2007), Cretaceous-Tertiary geology of the gangdese arc in the linzhou area, southern tibet, Tectonophysics, 433(1-4), 15–37, doi: 10.1016/J.TECTO.2007.01.005.

Heim, A., and A. Gansser (1975), Central Himalaya: Geological observations of the Swiss expedition, 1936, vol. 73, Hindustan Publishing Corporation (India).

Hoskin, P. W. O., and U. Schaltegger (2003), The composition of zircon and igneous and metamorphic petrogenesis, Reviews in Mineralogy and Geochemistry, 53(1), 27–62.

Hou, Z., Y. Gao, X. Qu, Z. Rui, and X. Mo (2004), Origin of adakitic intrusives generated during mid-miocene east–west extension in southern tibet, Earth and planetary science letters, 220(1-2), 139–155, doi: 10.1016/S0012-821X(04)00007-X.

Hourigan, J. K., P. W. Reiners, and M. T. Brandon (2005), U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry, Geochimica et cosmochimica acta, 69(13), 3349–3365, doi: 10.1016/j.gca.2005.01.024.

Huang, F., M. Li, J. Xu, Y. Zeng, J. Chen, B. Wang, H. Yu, L.-K. Chen, P. Zhao, and Z. Zhang (2019), Geodynamic transition from subduction to extension: evidence from the geochronology and geochemistry of granitoids in the sangsang area, southern lhasa terrane, tibet, International Journal of Earth Sciences, 108, 1663–1681, doi: 10.1007/s00531-019-01729-3.

Huang, W., G. Dupont-Nivet, P. Lippert, D. Hinsbergen, and E. Hallot (2013), Inclination shallowing in eocene linzizong sedimentary rocks from southern tibet: correction, possible causes and implications for reconstructing the India–Asia collision, Geophysical Journal International, 194(3), 1390–1411, doi: 10.1093/GJI/GGT188.

Hughes, C. A., M. J. Jessup, C. A. Shaw, and D. L. Newell (2019), Deformation conditions during syn-convergent extension along the cordillera blanca shear zone, peru, Geosphere, 15(4), 1342–1367, doi: 10.1130/ges02040.1.

Huntington, K., and K. Klepeis (2018), Challenges and opportunities for research in tectonics: Understanding deformation and the processes that link earth systems, from geologic time to human time. a community vision document submitted to the U.S. national science foundation, Tech. rep., University of Washington.

Husson, L., M. Bernet, S. Guillot, P. Huyghe, J.-L. Mugnier, A. Replumaz, X. Robert, and P. Van der Beek (2014), Dynamic ups and downs of the himalaya, Geology, 42(10), 839–842, doi: 10.1130/G36049.1.

Jessup, M. J., D. L. Newell, J. M. Cottle, A. L. Berger, and J. A. Spotila (2008), Orogen-parallel extension and exhumation enhanced by denudation in the trans-himalayan arun river gorge, ama drime massif, Tibet-Nepal, Geology, 36(7), 587, doi: 10.1130/g24722a.1.

Ji, W., F.-Y. Wu, S. Chung, J. Li, and C.-Z. Liu (2009), Zircon U-Pb geochronology and hf isotopic constraints on petrogenesis of the gangdese batholith, southern tibet, Chemical geology, 262(3-4), 229–245, doi: 10.1016/J.CHEMGEO.2009.01.020.

Kali, E., P. H. Leloup, N. Arnaud, G. Mahéo, D. Liu, E. Boutonnet, J. Van der Woerd, X. Liu, J. Liu-Zeng, and H. Li (2010), Exhumation history of the deepest central himalayan rocks, ama drime range: Key pressure-temperature-deformation-time constraints on orogenic models, Tectonics, 29(2).

Kapp, J. L. D., T. M. Harrison, P. Kapp, M. Grove, O. M. Lovera, and D. Lin (2005), Nyainqentanglha shan: A window into the tectonic, thermal, and geochemical evolution of the lhasa block, southern tibet, Journal of geophysical research, 110(B8), doi: 10.1029/2004jb003330.

Kapp, P., and P. G. DeCelles (2019), Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses, American journal of science, 319(3), 159–254.

Kapp, P., and J. H. Guynn (2004), Indian punch rifts tibet, Geology, 32(11), 993, doi: 10.1130/g20689.1.

Kapp, P., P. DeCelles, A. Leier, J. Fabijanic, S. He, A. Pullen, G. Gehrels, and L. Ding (2007), The gangdese retroarc thrust belt revealed, GSA today: a publication of the Geological Society of America, 17(7), 4–9, doi: 10.1130/GSAT01707A.1.

Kapp, P., M. Taylor, D. Stockli, and L. Ding (2008), Development of active low-angle normal fault systems during orogenic collapse: Insight from tibet, Geology, 36(4), 336, doi: 10.1130/0091-7613(2008)36[336:doalnf];2.

Kay, R. W., and S. Mahlburg Kay (1993), Delamination and delamination magmatism, Tectonophysics, 219(1-3), 177–189, doi: 10.1016/0040-1951(93)90295-u.

Ketcham, R., C. Gautheron, and L. Tassan-got (2011), Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case, Geochimica et cosmochimica acta, 75(24), 7779–7791, doi: 10.1016/J.GCA.2011.10.011.

Ketcham, R. A. (2005), Forward and inverse modeling of low-temperature thermochronometry data, Reviews in Mineralogy and Geochemistry, 58(1), 275–314, doi: 10.2138/rmg.2005.58.11.

Kind, R., X. Yuan, J. Saul, D. Nelson, S. V. Sobolev, J. Mechie, W. Zhao, G. Kosarev, J. Ni, U. Achauer, and M. Jiang (2002), Seismic images of crust and upper mantle beneath tibet: evidence for eurasian plate subduction, Science, 298(5596), 1219–1221, doi: 10.1126/science.1078115.

Klemperer, S., P. Zhao, C. Whyte, T. Darrah, L. Crossey, K. Karlstrom, T. Liu, C. Winn, D. Hilton, and L. Ding (2022), Limited underthrusting of india below tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision, Proceedings of the National Academy of Sciences of the United States of America, 119(12), e2113877,119, doi: 10.1073/pnas.2113877119.

Labrousse, L., B. Huet, L. Le Pourhiet, L. Jolivet, and E. Burov (2016), Rheological implications of extensional detachments: Mediterranean and numerical insights, Earth-science reviews, 161, 233–258, doi: 10.1016/j.earscirev.2016.09.003.

Lang, K., and K. Huntington (2014), Antecedence of the yarlung–siang–brahmaputra river, eastern himalaya, Earth and planetary science letters, 397, 145–158, doi: 10.1016/J.EPSL.2014.04.026.

Laskowski, A., P. Kapp, L. Ding, C. Campbell, and X. Liu (2017), Tectonic evolution of the yarlung suture zone, lopu range region, southern tibet, Tectonics, 36(1), 108–136, doi: 10.1002/2016TC004334.

Laskowski, A. K., P. Kapp, and F. Cai (2018), Gangdese culmination model: Oligocene–Miocene duplexing along the India-Asia suture zone, lazi region, southern tibet, GSA Bulletin, 130(7-8), 1355–1376.

Leary, R., D. A. Orme, A. K. Laskowski, P. G. DeCelles, P. Kapp, B. Carrapa, and M. Dettinger (2016), Along-strike diachroneity in deposition of the kailas formation in central southern tibet: Implications for indian slab dynamics, Geosphere, 12(4), 1198–1223, doi: 10.1130/ges01325.1.

Lee, H. Y., S. L. Chung, C. H. Lo, J. Ji, D. J. Wen, Q. Qian, T. Y. Lee, and Q. Zhang (2007), On the age and geodynamic significance of the linzizong volcanic successions, southern tibet: Neo-Tethyan slab breakoff in the early stage of the India-Asia collision.

Lee, H.-Y., S.-L. Chung, C.-H. Lo, J. Ji, T.-Y. Lee, Q. Qian, and Q. Zhang (2009), Eocene neotethyan slab breakoff in southern tibet inferred from the linzizong volcanic record, Tectonophysics, 477(1-2), 20–35, doi: 10.1016/j.tecto.2009.02.031.

Lee, H.-Y., S. Chung, J. Ji, Q. Qian, S. Gallet, C. Lo, T. Lee, and Q. Zhang (2012), Geochemical and Sr–Nd isotopic constraints on the genesis of the cenozoic linzizong volcanic successions, southern tibet, Journal of Asian Earth Sciences, 53, 96–114, doi: 10.1016/J.JSEAES.2011.08.019.

Lee, J., C. Hager, S. R. Wallis, D. F. Stockli, M. J. Whitehouse, M. Aoya, and Y. Wang (2011), Middle to late miocene extremely rapid exhumation and thermal reequilibration in the kung co rift, southern tibet, Tectonics, 30(2), doi: 10.1029/2010tc002745.

Leier, A. L., P. G. DeCelles, P. Kapp, and G. E. Gehrels (2007), Lower cretaceous strata in the lhasa terrane, tibet, with implications for understanding the early tectonic history of the tibetan plateau, Journal of Sedimentary Research, 77(10), 809–825, doi: 10.2110/jsr.2007.078.

Li, G., B. Kohn, M. Sandiford, Z. Xu, and L. Wei (2015), Constraining the age of liuqu conglomerate, southern tibet: Implications for evolution of the India-Asia collision zone, Earth and planetary science letters, 426, 259–266, doi: 10.1016/J.EPSL.2015.06.010.

Li, S., C. Guilmette, L. Ding, Q. Xu, J.-J. Fu, and Y.-H. Yue (2017), Provenance of mesozoic clastic rocks within the Bangong-Nujiang suture zone, central tibet: Implications for the age of the initial Lhasa-Qiangtang collision, Journal of Asian Earth Sciences, 147, 469–484, doi: 10.1016/j.jseaes.2017.08.019.

Li, Y., C. Wang, H. Yi, B. Deng, C. Liu, X. Yang, S. Lai, and W. Fang (2001), Characteristics of the shuanghu graben and cenozoic extension in northern tibet, Science in China. Series D, Earth sciences / Chinese Academy of Sciences, 44(S1), 284–291, doi: 10.1007/bf02911998.

Liu, A.-L., Q. Wang, D.-C. Zhu, Z.-D. Zhao, S.-A. Liu, R. Wang, J.-G. Dai, Y.-C. Zheng, and L.-L. Zhang (2018), Origin of the ca. 50 ma linzizong shoshonitic volcanic rocks in the eastern gangdese arc, southern tibet, Lithos, 304-307, 374–387, doi: 10.1016/j.lithos.2018.02.017.

Long, S. P., S. N. Thomson, P. W. Reiners, and R. V. Di Fiori (2015), Synorogenic extension localized by upper-crustal thickening: An example from the late cretaceous nevadaplano, Geology, 43(4), 351–354, doi: 10.1130/g36431.1.

Maheo, G., P. Leloup, F. Valli, R. Lacassin, N. Arnaud, J. Paquette, A. Fernandez, L. Haibing, K. Farley, and P. Tapponnier (2007), Post 4 ma initiation of normal faulting in southern tibet. constraints from the kung co half graben, Earth and planetary science letters, 256(1-2), 233–243, doi: 10.1016/j.epsl.2007.01.029.

Marrett, R., and M. R. Strecker (2000), Response of intracontinental deformation in the central andes to late cenozoic reorganization of south american plate motions, Tectonics, 19(3), 452–467, doi: 10.1029/1999tc001102.

McCaffrey, R., and J. Nabelek (1998), Role of oblique convergence in the active deformation of the himalayas and southern tibet plateau, Geology, 26(8), 691, doi: 10.1130/0091-7613(1998)026<0691:roocit>;2.

McCallister, A. T., M. H. Taylor, M. A. Murphy, R. H. Styron, and D. F. Stockli (2014), Thermochronologic constraints on the late cenozoic exhumation history of the gurla mandhata metamorphic core complex, southwestern tibet, Tectonics, 33(2), 27–52, doi: 10.1002/2013tc003302.

Mo, X., Y. Niu, G. Dong, Z. Zhao, Z. Hou, S. Zhou, and S. Ke (2008), Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the paleogene linzizong volcanic succession in southern tibet, Chemical geology, 250(1-4), 49–67, doi: 10.1016/j.chemgeo.2008.02.003.

Molnar, P., and P. Tapponnier (1978), Active tectonics of tibet, Journal of geophysical research, 83(B11), 5361–5375, doi: 10.1029/jb083ib11p05361.

Molnar, P., P. England, and J. Martinod (1993), Mantle dynamics, uplift of the tibetan plateau, and the indian monsoon, Reviews of geophysics, 31(4), 357–396, doi: 10.1029/93rg02030.

Murphy, M., V. I. Sanchez, and M. Taylor (2010), Syncollisional extension along the India-Asia suture zone, south-central tibet: Implications for crustal deformation of tibet, Earth and planetary science letters, 290(3-4), 233–243, doi: 10.1016/J.EPSL.2009.11.046.

Murphy, M. A., A. Yin, P. Kapp, T. M. Harrison, C. E. Manning, F. J. Ryerson, D. Lin, and G. Jinghui (2002), Structural evolution of the gurla mandhata detachment system, southwest tibet: Implications for the eastward extent of the karakoram fault system, Geological Society of America bulletin, 114(4), 428–447, doi: 10.1130/0016-7606(2002)114<0428:seotgm>;2.

Nábelek, J., G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B.-S. Huang, and Hi-CLIMB Team (2009), Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment, Science, 325(5946), 1371–1374, doi: 10.1126/science.1167719.

Orme, D., and A. Laskowski (2016), Basin analysis of the Albian–Santonian xigaze forearc, lazi region, South-Central tibet, Journal of Sedimentary Research, 86(8), 894–913, doi: 10.2110/JSR.2016.59.

Orme, D. A. (2019), Burial and exhumation history of the xigaze forearc basin, yarlung suture zone, tibet, Geoscience frontiers, 10(3), 895–908, doi: 10.1016/j.gsf.2017.11.011.

Orme, D. A., B. Carrapa, and P. Kapp (2015), Sedimentology, provenance and geochronology of the upper cretaceous–lower eocene western xigaze forearc basin, southern tibet, Basin Research, 27(4), 387–411.

Owens, T. J., and G. Zandt (1997), Implications of crustal property variations for models of tibetan plateau evolution, Nature, 387(6628), 37–43, doi: 10.1038/387037a0.

Paces, J. B., and J. D. Miller, Jr (1993), Precise U-Pb ages of duluth complex and related mafic intrusions, northeastern minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 ga midcontinent rift system, Journal of geophysical research, 98(B8), 13,997–14,013, doi: 10.1029/93jb01159.

Pan, G. T., J. Ding, D. S. Yao, and . W. L. Q. (2004), Geological map of the tibetan plateau and adjacent areas (1:1,500,000).

Pan, Y., and W. S. F. Kidd (1992), Nyainqentanglha shear zone: A late miocene extensional detachment in the southern tibetan plateau, Geology, 20(9), 775, doi: 10.1130/0091-7613(1992)020<0775:nszalm>;2.

Patriat, P., and J. Achache (1984), India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311(5987), 615–621, doi: 10.1038/311615A0.Platt, J. P., and P. C. England (1994), Convective removal of lithosphere beneath mountain belts; thermal and mechanical consequences, American journal of science, 294(3), 307–336, doi: 10.2475/ajs.294.3.307.

Pullen, A., M. Ibáñez-Mejia, G. E. Gehrels, D. Giesler, and M. Pecha (2018), Optimization of a laser ablation-single collector-inductively coupled plasma-mass spectrometer (thermo element 2) for accurate, precise, and efficient zircon U-Th-Pb geochronology, Geochemistry, Geophysics, Geosystems, 19(10), 3689–3705, doi: 10.1029/2018gc007889.

Ratschbacher, L., W. Frisch, C. Chen, and G. Pan (1992), Deformation and motion along the southern margin of the lhasa block (tibet) prior to and during the India-Asia collision, Journal of Geodynamics, 16(1-2), 21–54, doi: 10.1016/0264-3707(92)90017-m.

Ratschbacher, L., W. Frisch, G. Liu, and C. Chen (1994), Distributed deformation in southern and western tibet during and after the India-Asia collision, Journal of geophysical research, 99(B10), 19,917–19,945, doi: 10.1029/94jb00932.

Ratschbacher, L., I. Krumrei, M. Blumenwitz, M. Staiger, R. Gloaguen, B. V. Miller, S. D. Samson, M. A. Edwards, and E. Appel (2011), Rifting and strike-slip shear in central tibet and the geometry, age and kinematics of upper crustal extension in tibet, Geological Society, London, Special Publications, 353(1), 127–163.

Reiners, P., and K. Farley (2001), Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the bighorn mountains, wyoming, Earth and planetary science letters, 188(3-4), 413–420, doi: 10.1016/S0012-821X(01)00341-7.

Reiners, P., K. Farley, and H. J. Hickes (2002), He diffusion and (U–Th)/He thermochronometry of zircon: initial results from fish canyon tuff and gold butte, Tectonophysics, 349(1-4), 297–308, doi: 10.1016/S0040-1951(02)00058-6.

Reiners, P. W. (2005), Zircon (U-Th)/He thermochronometry, Reviews in Mineralogy and Geochemistry, 58(1), 151–179, doi: 10.2138/rmg.2005.58.6.

Reiners, P. W., and M. T. Brandon (2006), Using thermochronology to understand orogenic erosion, Annual review of earth and planetary sciences, 34(1), 419–466, doi: 10.1146/

Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating, Geochimica et cosmochimica acta, 68(8), 1857–1887, doi: 10.1016/j.gca.2003.10.021.

Replumaz, A., A. M. Negredo, A. Villaseñor, and S. Guillot (2010), Indian continental subduction and slab break-off during tertiary collision, Terra nova, pp. no–no, doi: 10.1111/j.1365-3121.2010.00945.x.

Reynolds, A. (2023), Kinematic evolution of the tangra yumco rift, South-Central tibet: Supplementary data tables, doi: 10.5281/zenodo.10003842.

Sanchez, V. I., M. Murphy, A. C. Robinson, T. Lapen, and M. Heizler (2013), Tectonic evolution of the India–Asia suture zone since middle eocene time, lopukangri area, south-central tibet, Journal of Asian Earth Sciences, 62, 205–220, doi: 10.1016/J.JSEAES.2012.09.004.

Schärer, U., R.-H. Xu, and C. J. Allègre (1984), UPb geochronology of gangdese (transhimalaya) plutonism in the Lhasa-Xigaze region, tibet, Earth and planetary science letters, 69(2), 311–320, doi: 10.1016/0012-821x(84)90190-0.

Schmitz, M. D., and S. A. Bowring (2001), U-Pb zircon and titanite systematics of the fish canyon tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks, Geochimica et cosmochimica acta, 65(15), 2571–2587, doi: 10.1016/s0016-7037(01)00616-0.

Schmitz, M. D., S. A. Bowring, and T. R. Ireland (2003), Evaluation of duluth complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results, Geochimica et cosmochimica acta, 67(19), 3665–3672, doi: 10.1016/s0016-7037(03)00200-x.

Shen, T., G. Wang, A. Replumaz, L. Husson, A. A. G. Webb, M. Bernet, P. H. Leloup, P. Zhang, G. Mahéo, and K. Zhang (2020), Miocene subsidence and surface uplift of southernmost tibet induced by indian subduction dynamics, Geochemistry, Geophysics, Geosystems, 21(10), doi: 10.1029/2020gc009078.

Sheng, Y., S. Jin, M. Comeau, H. Dong, L. Zhang, L. Lei, B. Li, W. Wei, G. Ye, and Z. Lu (2021), Lithospheric structure near the northern Xainza-Dinggye rift, tibetan plateau–implications for rheology and tectonic dynamics, Journal of Geophysical Research, [Solid Earth], 126(8), e2020JB021,442, doi: 10.1029/2020JB021442.

Sobel, E. R., and M. R. Strecker (2003), Uplift, exhumation and precipitation: tectonic and climatic control of late cenozoic landscape evolution in the northern sierras pampeanas, argentina, Basin Research, 15(4), 431–451, doi: 10.1046/j.1365-2117.2003.00214.x.

Stockli, D. F., M. Taylor, A. Yin, T. M. Harrison, J. D’Andrea, P. Kapp, and L. Ding (2002), Late Miocene-Pliocene inception of EW extension in tibet as evidenced by apatite (U-Th)/He data, in Geological Society of America Abstracts with Programs, vol. 34, p. 411.

Styron, R., M. Taylor, and K. Okoronkwo (2010), Database of active structures from the Indo-Asian collision, Eos, 91(20), 181–182, doi: 10.1029/2010eo200001.

Styron, R., M. Taylor, K. Sundell, D. Stockli, J. Oalmann, A. Möller, A. T. McCallister, D. Liu, and L. Ding (2013), Miocene initiation and acceleration of extension in the south lunggar rift, western tibet: Evolution of an active detachment system from structural mapping and (U-Th)/He thermochronology, Tectonics, 32(4), 880–907, doi: 10.1002/tect.20053.

Styron, R., M. Taylor, and K. Sundell (2015), Accelerated extension of tibet linked to the northward underthrusting of indian crust, Nature geoscience, 8(2), 131–134, doi: 10.1038/ngeo2336.

Styron, R. H., M. H. Taylor, and M. A. Murphy (2011), Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the high himalaya, Geosphere, 7(2), 582–596, doi: 10.1130/ges00606.1.

Sundell, K., G. Gehrels, D. Quinn, M. Pecha, D. Giesler, M. Pepper, S. George, and A. White (2020), Agecalcml: An open-source matlab-based data reduction platform for la-icp-ms geochronology and geochemistry data from the arizona laserchron center, in Geological Society of America Abstracts, Geological Society of America, doi: 10.1130/abs/2020AM-358944.

Sundell, K., A. Laskowski, P. Kapp, M. Ducea, and J. Chapman (2021), Jurassic to neogene quantitative crustal thickness estimates in southern tibet, GSA today: a publication of the Geological Society of America, 31(6), 4–10, doi: 10.1130/gsatg461a.1.

Sundell, K. E., M. H. Taylor, R. H. Styron, D. F. Stockli, P. Kapp, C. Hager, D. Liu, and L. Ding (2013), Evidence for constriction and pliocene acceleration of east-west extension in the north lunggar rift region of west central tibet, Tectonics, 32(5), 1454–1479, doi: 10.1002/tect.20086.

Taylor, M., and A. Yin (2009), Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and cenozoic volcanism, Geosphere, 5(3), 199–214, doi: 10.1130/ges00217.1.

Taylor, M., A. Yin, F. J. Ryerson, P. Kapp, and L. Ding (2003), Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the tibetan plateau, Tectonics, 22(4), doi: 10.1029/2002tc001361.

Taylor, M., A. Forte, A. Laskowski, and L. Ding (2021), Active uplift of southern tibet revealed, GSA today: a publication of the Geological Society of America, 31(8), 4–10, doi: 10.1130/gsatg487a.1.

Thiede, R. C., J. R. Arrowsmith, B. Bookhagen, M. McWilliams, E. R. Sobel, and M. R. Strecker (2006), Dome formation and extension in the tethyan himalaya, leo pargil, northwest india, Geological Society of America bulletin, 118(5-6), 635–650, doi: 10.1130/b25872.1.

Tilmann, F., J. Ni, and INDEPTH III Seismic Team (2003), Seismic imaging of the downwelling indian lithosphere beneath central tibet, Science, 300(5624), 1424–1427, doi: 10.1126/science.1082777.

Tremblay, M. M., M. Fox, J. L. Schmidt, and others (2015), Erosion in southern tibet shut down at∼ 10 ma due to enhanced rock uplift within the himalaya, Proceedings of the, 112(39), 12,030–12,035.

Turner, S., C. Hawkesworth, J. Liu, N. Rogers, S. Kelley, and P. van Calsteren (1993), Timing of tibetan uplift constrained by analysis of volcanic rocks, Nature, 364(6432), 50–54, doi: 10.1038/364050a0.

Vermeesch, P. (2018), IsoplotR: A free and open toolbox for geochronology, Geoscience frontiers, 9(5), 1479–1493, doi: 10.1016/J.GSF.2018.04.001.

Vermeesch, P., and Y. Tian (2014), Thermal history modelling: HeFTy vs. QTQt, Earth-science reviews, 139, 279–290, doi: 10.1016/j.earscirev.2014.09.010.

Walker, J., B. Tikoff, J. Newman, R. Clark, J. Ash, J. Good, E. G. Bunse, A. Möller, M. Kahn, R. T. Williams, Z. Michels, J. Andrew, and C. Rufledt (2019), StraboSpot data system for structural geology, Geosphere, 15(2), 533–547, doi: 10.1130/GES02039.1.

Wang, C., X. Li, Z. Liu, Y. Li, L. Jansa, J. Dai, and Y. Wei (2012), Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the xigaze forearc basin along the yarlung zangbo suture zone, Gondwana Research, 22(2), 415–433, doi: 10.1016/J.GR.2011.09.014.

Wang, C., L. Ding, F.-L. Cai, H.-Q. Wang, L.-Y. Zhang, and Y.-H. Yue (2022), Evolution of the sumdo paleo-tethyan ocean: Constraints from permian luobadui formation in lhasa terrane, south tibet, Palaeogeography, palaeoclimatology, palaeoecology, 595(110974), 110,974, doi: 10.1016/j.palaeo.2022.110974.

Wang, E., P. J. J. Kamp, G. Xu, K. V. Hodges, K. Meng, L. Chen, G. Wang, and H. Luo (2015), Flexural bending of southern tibet in a retro foreland setting, Scientific reports, 5(1), 12,076, doi: 10.1038/srep12076.

Wang, H., J. R. Elliott, T. J. Craig, T. J. Wright, J. Liu-Zeng, and A. Hooper (2014), Normal faulting sequence in the Pumqu-Xainza rift constrained by InSAR and teleseismic body-wave seismology, Geochemistry, Geophysics, Geosystems, 15(7), 2947–2963, doi: 10.1002/2014gc005369.

Wang, J., X. Hu, F.-Y. Wu, and L. Jansa (2010), Provenance of the liuqu conglomerate in southern tibet: A paleogene erosional record of the Himalayan–Tibetan orogen, Sedimentary geology, 231(3-4), 74–84, doi: 10.1016/J.SEDGEO.2010.09.004.

Wang, J., X. Hu, E. Garzanti, and F.-Y. Wu (2013), Upper oligocene–lower miocene gangrinboche conglomerate in the xigaze area, southern tibet: Implications for himalayan uplift and Paleo-Yarlung-Zangbo initiation, The Journal of geology, 121(4), 425–444, doi: 10.1086/670722.

Wells, M. L., and T. D. Hoisch (2008), The role of mantle delamination in widespread late cretaceous extension and magmatism in the cordilleran orogen, western united states, Geological Society of America bulletin, 120(5-6), 515–530, doi: 10.1130/b26006.1.

Wells, M. L., T. D. Hoisch, A. M. Cruz-Uribe, and J. D. Vervoort (2012), Geodynamics of synconvergent extension and tectonic mode switching: Constraints from the Sevier-Laramide orogen, Tectonics, 31(1), doi: 10.1029/2011TC002913.

Wemicke, B. (1992), Cenozoic extensional tectonics of the US cordillera, The Geology of North America, 3, 553–582.

Whipp, D. M., D. A. Kellett, I. Coutand, and R. A. Ketcham (2022), Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers, Geochronology, 4(1), 143–152, doi: 10.5194/gchron-4-143-2022.

Willett, S. D., S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen (2014), Dynamic reorganization of river basins, Science, 343(6175), 1248,765, doi: 10.1126/science.1248765.

Williams, H., S. Turner, S. Kelley, and N. Harris (2001), Age and composition of dikes in southern tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism, Geology, 29(4), 339, doi: 10.1130/0091-7613(2001)029<0339:aacodi>;2.

Williams, H., S. Turner, J. Pearce, S. Kelley, and N. Harris (2004), Nature of the source regions for post-collisional, potassic magmatism in southern and northern tibet from geochemical variations and inverse trace element modelling, Journal of Petrology, 45(3), 555–607, doi: 10.1093/PETROLOGY/EGG094.

Wolff, R., R. Hetzel, I. Dunkl, Q. Xu, M. Bröcker, and A. Anczkiewicz (2019), High-angle normal faulting at the tangra yumco graben (southern tibet) since ∼15 ma, The Journal of geology, 127(1), 15–36, doi: 10.1086/700406.

Wolff, R., R. Hetzel, K. Hölzer, I. Dunkl, Q. Xu, A. A. Anczkiewicz, and Z. Li (2023), Rift propagation in south tibet controlled by under-thrusting of india: a case study of the tangra yumco graben (south tibet), Journal of the Geological Society, 180(2), jgs2022–090, doi: 10.1144/jgs2022-090.

Wu, C., K. D. Nelson, G. Wortman, S. D. Samson, Y. Yue, J. Li, W. S. F. Kidd, and M. A. Edwards (1998), Yadong cross structure and south tibetan detachment in the east central himalaya (89–90 e), Tectonics, 17(1), 28–45.

Wu, F.-Y., W. Ji, C.-Z. Liu, and S. Chung (2010), Detrital zircon U–Pb and hf isotopic data from the xigaze fore-arc basin: Constraints on transhimalayan magmatic evolution in southern tibet, Chemical geology, 271(1-2), 13–25, doi: 10.1016/J.CHEMGEO.2009.12.007.

Wu, H., C. Li, M.-J. Xu, and X. Li (2015), Early cretaceous adakitic magmatism in the dachagou area, northern lhasa terrane, tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong–Nujiang ocean, Journal of Asian Earth Sciences, 97, 51–66, doi: 10.1016/J.JSEAES.2014.10.014.

Wu, H. R., D. A. Wang, L. C. Wang, and Others (1977), Cretaceous in Lhaze–Gyangze, southern xizang, Scientia Geologica Sinica, 3(250), e261.

Yin, A. (2000), Mode of cenozoic east-west extension in tibet suggesting a common origin of rifts in asia during the Indo-Asian collision, Journal of geophysical research, 105(B9), 21,745–21,759, doi: 10.1029/2000jb900168.

Yin, A. (2006), Cenozoic tectonic evolution of the himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth-science reviews, 76(1-2), 1–131, doi: 10.1016/j.earscirev.2005.05.004.

Yin, A., and T. M. Harrison (2000), Geologic evolution of the Himalayan-Tibetan orogen, Annual review of earth and planetary sciences, 28(1), 211–280, doi: 10.1146/

Yin, A., and M. H. Taylor (2011), Mechanics of v-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation, Geological Society of America bulletin, 123(9-10), 1798–1821, doi: 10.1130/b30159.1.

Yin, A., T. M. Harrison, F. J. Ryerson, C. Wenji, W. S. F. Kidd, and P. Copeland (1994), Tertiary structural evolution of the gangdese thrust system, southeastern tibet, Journal of geophysical research, 99(B9), 18,175–18,201, doi: 10.1029/94jb00504.

Yin, A., T. M. Harrison, M. A. Murphy, M. Grove, S. Nie, F. J. Ryerson, W. Xiao Feng, and C. Zeng Le (1999a), Tertiary deformation history of southeastern and southwestern tibet during the Indo-Asian collision, Geological Society of America bulletin, 111(11), 1644, doi: 10.1130/0016-7606(1999)111<1644:tdhosa>;2.

Yin, A., P. A. Kapp, M. A. Murphy, C. E. Manning, T. Mark Harrison, M. Grove, D. Lin, D. Xi-Guang, and W. Cun-Ming (1999b), Significant late neogene east-west extension in northern tibet, Geology, 27(9), 787, doi: 10.1130/0091-7613(1999)027<0787:slnewe>;2.

Zhang, J., and L. Guo (2007), Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south tibetan detachment system, Journal of Asian Earth Sciences, 29(5-6), 722–736, doi: 10.1016/j.jseaes.2006.05.003.

Zhang, J., L. Guo, and L. Ding (2002), Structural characteristics of middle and southern Xainza-Dinggye normal fault system and its relationship to southern tibetan detachment system, Chinese science bulletin = Kexue tongbao, 47, 1063–1069, doi: 10.1360/02TB9239.

Zhang, J., J. Dai, X. Qian, Y. Ge, and C. Wang (2017), Sedimentology, provenance and geochronology of the miocene qiuwu formation: Implication for the uplift history of southern tibet, Geoscience frontiers, 8(4), 823–839, doi: 10.1016/j.gsf.2016.05.010.

Zhang, L., M. Ducea, L. Ding, A. Pullen, P. Kapp, and D. Hoffman (2014), Southern tibetan Oligocene-Miocene adakites: A record of indian slab tearing, Lithos, 210, 209–223, doi: 10.1016/J.LITHOS.2014.09.029.

Zhang, P.-Z., Z. Shen, M. Wang, W. Gan, R. Bürgmann, P. Molnar, Q. Wang, Z. Niu, J. Sun, J. Wu, and Others (2004), Continuous deformation of the tibetan plateau from global positioning system data, Geology, 32(9), 809–812.

Zhang, Y., F. Huang, J. Xu, Y. Zeng, B. Wang, M. Lv, L. Zhang, M. Li, Z. Zhang, Y. Tian, Q. Liu, and L. Zhang (2022), Origin of the volcanic rocks in dianzhong formation, central lhasa terrane, tibet: implication for the genesis of syn-collisional magmatism and Neo-Tethyan slab roll-back, Soviet economy, 65(1), 21–39, doi: 10.1080/00206814.2022.2031314.

Zhu, B., W. S. F. Kidd, D. B. Rowley, B. S. Currie, and N. Shafique (2005), Age of initiation of the India-Asia collision in the East-Central himalaya, The Journal of geology, 113(3), 265–285, doi: 10.1086/428805.

Zhu, D.-C., Z.-D. Zhao, Y. Niu, X.-X. Mo, S.-L. Chung, Z.-Q. Hou, L.-Q. Wang, and F.-Y. Wu (2011), The lhasa terrane: Record of a microcontinent and its histories of drift and growth, Earth and planetary science letters, 301(1), 241–255, doi: 10.1016/j.epsl.2010.11.005.

Zhu, D.-C., Z.-D. Zhao, Y. Niu, Y. Dilek, Q. Wang, W.-H. Ji, G.-C. Dong, Q.-L. Sui, Y.-S. Liu, H.-L. Yuan, and Others (2012), Cambrian bimodal volcanism in the lhasa terrane, southern tibet: record of an early paleozoic andean-type magmatic arc in the australian proto-tethyan margin, Chemical geology, 328, 290–308.

Zhu, D.-C., Q. Wang, Z.-D. Zhao, S.-L. Chung, P. A. Cawood, Y. Niu, S.-A. Liu, F.-Y. Wu, and X.-X. Mo (2015), Corrigendum: Magmatic record of India-Asia collision, Scientific reports, 5(1), 17,236, doi: 10.1038/srep17236