Structural Observations of the Northern North Sea: Insights into Rift Failure Dynamics

Main Article Content

Gwenn Peron-Pinvidic
Tor Åkermoen
Lars Leivestad

Abstract

Lithospheric extension leads to rift formation and may continue to the point of breakup, with oceanic ridge initiation and the formation of two conjugate rifted margins. In some settings, extension can cease, and the rift may be abandoned. These so-called failed rifts archive snapshots of early phases of deformation, with geometries that may help better constrain the parameters that can prevent a rift from reaching breakup, such as lithospheric rheology, thermal state, rift opening direction and rate, inheritance. This contribution summarizes a study of the Norwegian Continental Shelf which includes the North Sea Rift and the Møre and Vøring rifted margins. We proceeded to the interpretation of a new dataset of deep penetrating seismic reflection profiles and worked at the regional scale, deliberately ignoring local particularities, to focus on the large-scale structural picture. The aim is to list architectural similarities and differences between the failed rift and the successful rifted margins. Our mapping shows that the North Sea structural geometries and basement seismic facies are very similar to the observations listed for the adjacent Møre and Vøring rifted margins. Various types of tectonic structures are observed, from thick anastomosing shear zones possibly evolving into core-complex geometries, to composite large-scale detachment faults and standard high-angle normal faults. These are categorized into five classes and interpreted as exemplifying the rift tectonic evolution through distinct generations of deformation structures that can activate, de-activate and re-activate. Based on these observations, rift failure dynamics are discussed, and it is proposed that the North Sea rift abandonment may not be related to pre-rift local conditions but rather to the ability to initiate specific tectonic structures such distal breakaway complexes.

Article Details

Section
Articles

References

Badley, M. E., J. D. Price, C. Rambech Dahl, and T. Agdestein (1988), The structural evolution of the northern viking graben and its bearing upon extensional modes of basin formation, Journal of the Geological Society, 145(3), 455–472, doi: 10.1144/gsjgs.145.3.0455.

Bartholomew, I. D., J. M. Peters, and C. M. Powell (1993), Regional structural evolution of the north sea: oblique slip and the reactivation of basement lineaments, Geological Society, London, Petroleum Geology Conference Series, 4(1), 1109–1122, doi: 10.1144/0041109.

Bassi, G. (1991), Factors controlling the style of continental rifting: insights from numerical modelling, Earth and planetary science letters, 105(4), 430–452, doi: 10.1016/0012-821X(91)90183-I.

Bell, R. E., C. A. Jackson, P. S. Whipp, and B. Clements (2014), Strain migration during multiphase extension: Observations from the northern North Sea, Tectonics, 33(10), 1936–1963, doi: 10.1002/2014TC003551.

Blystad, P. (1995), Structural elements of the norwegian continental shelf. part 2 : The norwegian sea region, NPD Bull., 8. Brekke, H. (2000), The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins, in Dynamics of the Norwegian Margin, Geological Society of London, doi: 10.1144/GSL.SP.2000.167.01.13.

Brune, S., C. Heine, M. Pérez-Gussinyé, and S. V. Sobolev (2014), Rift migration explains continental margin asymmetry and crustal hyper-extension, Nature communications, 5, 4014, doi: 10.1038/ncomms5014.

Brune, S., G. Corti, and G. Ranalli (2017), Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the kenyan and ethiopian rifts across the turkana depression, Tectonics, 36(9), 1767–1786, doi: 10.1002/2017TC004739.

Brune, S., S. E. Williams, and R. D. Müller (2018), Oblique rifting: the rule, not the exception, Solid earth, 9(5), 1187–1206, doi: 10.5194/se-9-1187-2018.

Capdevila, R., and D. Mougenot (1988), Pre-Mesozoic basement of the western iberian continental margin and its place in the variscan belt, in Proceedings of the Ocean Drilling Program, vol. 103, pp. 3–12, Ocean Drilling Program, doi: 10.2973/odp.proc.sr.103.116.1988.

Christiansson, P., J. I. Faleide, and A. M. Berge (2000), Crustal structure in the northern north sea: an integrated geophysical study, Geological Society, London, Special Publications, 167(1), 15–40, doi: 10.1144/GSL.SP.2000.167.01.02.

Corti, G. (2008), Control of rift obliquity on the evolution and segmentation of the main ethiopian rift, Nature geoscience, 1(4), 258–262, doi: 10.1038/ngeo160.

Corti, G., J. van Wijk, S. Cloetingh, and C. K. Morley (2007), Tectonic inheritance and continental rift architecture: Numerical and analogue models of the east african rift system, Tectonics, 26(6), doi: 10.1029/2006tc002086.

Doré, A. G., E. R. Lundin, C. Fichler, and O. Olesen (1997), Patterns of basement structure and reactivation along the NE atlantic margin, Journal of the Geological Society, 154(1), 85–92, doi: 10.1144/gsjgs.154.1.0085.

Duffy, O. B., R. E. Bell, C. A.-L. Jackson, R. L. Gawthorpe, and P. S. Whipp (2015), Fault growth and interactions in a multiphase rift fault network: Horda platform, norwegian north sea, Journal of Structural Geology, 80, 99–119, doi: 10.1016/j.jsg.2015.08.015.

Dunbar, J. A., and D. S. Sawyer (1989), How preexisting weaknesses control the style of continental breakup, Journal of geophysical research, 94(B6), 7278, doi: 10.1029/jb094ib06p07278.

Dyksterhuis, S., P. Rey, R. D. Müller, and L. Moresi (2007), Effects of initial weakness on rift architecture, Geological Society, London, Special Publications, 282(1), 443–455, doi: 10.1144/SP282.18.

Evans, D., C. Graham, and Others (2003), The millennium atlas: Petroleum geology of the central and northern North Sea, Geological Society of London, 16, 389.

Færseth, R. B. (1996), Interaction of Permo-Triassic and Jurassic extensional fault-blocks during the development of the northern North Sea, Journal of the Geological Society, 153(6), 931–944, doi: 10.1144/gsjgs.153.6.0931.

Faleide, J. I., K. Bjørlykke, and R. H. Gabrielsen (2015), Geology of the norwegian continental shelf, in Petroleum Geoscience: From Sedimentary Environments to Rock Physics, edited by K. Bjørlykke, pp. 603–637, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-642-34132-8_25.

Fazlikhani, H., H. Fossen, R. L. Gawthorpe, J. I. Faleide, and R. E. Bell (2017), Basement structure and its influence on the structural configuration of the northern north sea rift, Tectonics, 36(6), 1151–1177, doi: 10.1002/2017TC004514.

Fichler, C., T. Odinsen, H. Rueslåtten, O. Olesen, J. E. Vindstad, and S. Wienecke (2011), Crustal inhomogeneities in the northern north sea from potential field modeling: Inherited structure and serpentinites?, Tectonophysics, 510(1), 172–185, doi: 10.1016/j.tecto.2011.06.026.

Fossen, H. (2010), Extensional tectonics in the north atlantic caledonides: a regional view, Geological Society, London, Special Publications, 335(1), 767–793, doi: 10.1144/SP335.31.

Fossen, H., R. H. Gabrielsen, J. I. Faleide, and C. A. Hurich (2014), Crustal stretching in the Scandinavian Caledonides as revealed by deep seismic data, Geology, 42(9), 791–794, doi: 10.1130/G35842.1.

Fossen, H., H. F. Khani, J. I. Faleide, A. K. Ksienzyk, and W. J. Dunlap (2017), Post-Caledonian extension in the west norway–northern north sea region: the role of structural inheritance, Geological Society, London, Special Publications, 439(1), 465–486, doi: 10.1144/SP439.6.

Gabrielsen, R. H., H. Fossen, J. I. Faleide, and C. A. Hurich (2015), Mega-scale moho relief and the structure of the lithosphere on the eastern flank of the viking graben, offshore southwestern norway, Tectonics, 34(5), 803–819, doi: 10.1002/2014tc003778.

Glerum, A., S. Brune, D. S. Stamps, and M. R. Strecker (2020), Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the east african rift, Nature communications, 11(1), 2881, doi: 10.1038/s41467-020-16176-x.

Gresseth, J. L. S., P. T. Osmundsen, and G. Péron-Pinvidic (2023), 3D evolution of detachment fault systems in necking domains: Insights from the klakk fault complex and the frøya high, mid-norwegian rifted margin, Tectonics, 42(3), doi: 10.1029/2022tc007600.

Guiraud, M., A. Buta-Neto, and D. Quesne (2010), Segmentation and differential post-rift uplift at the angola margin as recorded by the transform-rifted benguela and oblique-to-orthogonal-rifted kwanza basins, Marine and Petroleum Geology, 27(5), 1040–1068, doi: 10.1016/j.marpetgeo.2010.01.017.

Heine, C., J. Zoethout, and R. D. Müller (2013), Kinematics of the south atlantic rift, Solid earth, 4(2), 215–253, doi: 10.5194/se-4-215-2013.

Huismans, R., and C. Beaumont (2011), Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins, Nature, 473(7345), 74–78, doi: 10.1038/nature09988.

Huismans, R. S., and C. Beaumont (2007), Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins, Geological Society, London, Special Publications, 282(1), 111–138, doi: 10.1144/SP282.6.

Klingelhöfer, F., R. A. Edwards, R. W. Hobbs, and R. W. England (2005), Crustal structure of the NE rockall trough from wide-angle seismic data modeling, Journal of Geophysical Research, [Solid Earth], 110(B11), doi: 10.1029/2005JB003763.

Lei, C., and J. Ren (2016), Hyper-extended rift systems in the xisha trough, northwestern south china sea: Implications for extreme crustal thinning ahead of a propagating ocean, Marine and Petroleum Geology, 77, 846–864, doi: 10.1016/j.marpetgeo.2016.07.022.

Lenhart, A., C. A.-L. Jackson, R. E. Bell, O. B. Duffy, R. L. Gawthorpe, and H. Fossen (2019), Structural architecture and composition of crystalline basement offshore west norway, Lithosphere, 11(2), 273–293, doi: 10.1130/L668.1.

Li, Y., A. Abbas, C.-F. Li, T. Sun, S. Zlotnik, T. Song, L. Zhang, Z. Yao, and Y. Yao (2020), Numerical modeling of failed rifts in the northern south china sea margin: Implications for continental rifting and breakup, Journal of Asian Earth Sciences, 199, 104,402, doi: 10.1016/j.jseaes.2020.104402.

Lymer, G., C. Childs, and J. Walsh (2023), Punctuated propagation of a corrugated extensional detachment offshore ireland, Basin Research, 35(3), 1037–1052, doi: 10.1111/bre.12745.

MacMahon, H., J. K. Welford, L. Sandoval, and A. L. Peace (2020), The rockall and the orphan basins of the southern north atlantic ocean: Determining continuous basins across conjugate margins, Geosciences Journal, 10(5), 178, doi: 10.3390/geosciences10050178.

Naliboff, J., and S. J. H. Buiter (2015), Rift reactivation and migration during multiphase extension, Earth and planetary science letters, 421, 58–67, doi: 10.1016/j.epsl.2015.03.050.

Nirrengarten, M., G. Mohn, N. J. Kusznir, F. Sapin, F. Despinois, M. Pubellier, S. P. Chang, H. C. Larsen, and J. C. Ringenbach (2020), Extension modes and breakup processes of the southeast China-Northwest palawan conjugate rifted margins, Marine and Petroleum Geology, 113, 104,123, doi: 10.1016/j.marpetgeo.2019.104123.

O’Reilly, B. M., F. Hauser, C. Ravaut, P. M. Shannon, and P. W. Readman (2006), Crustal thinning, mantle exhumation and serpentinization in the Porcupine Basin, offshore Ireland: evidence from wide-angle seismic data, Journal of the Geological Society, 163(5), 775–787, doi: 10.1144/0016-76492005-079.

Osmundsen, P. T., and G. Péron-Pinvidic (2018), Crustal-scale fault interaction at rifted margins and the formation of domain-bounding breakaway complexes: Insights from offshore norway, Tectonics, 37(3), 935–964, doi: 10.1002/2017tc004792.

Osmundsen, P. T., A. Sommaruga, J. R. Skilbrei, and O. Olesen (2002), Deep structure of the mid norway rifted margin, Norwegian Journal of Geology/Norsk Geologisk Forening, 82(4), 205–224.

Osmundsen, P. T., A. Braathen, Ø. Nordgulen, D. Roberts, G. B. Meyer, and E. Eide (2003), The devonian nesna shear zone and adjacent gneiss-cored culminations, North–Central norwegian caledonides, Journal of the Geological Society, 160(1), 137–150, doi: 10.1144/0016-764901-173.

Osmundsen, P. T., E. A. Eide, N. E. Haabesland, D. Roberts, T. B. Andersen, M. Kendrick, B. Bingen, A. Braathen, and T. F. Redfield (2006), Kinematics of the høybakken detachment zone and the Møre–Trøndelag fault complex, central norway, Journal of the Geological Society, 163(2), 303–318, doi: 10.1144/0016-764904-129.

Osmundsen, P. T., G. Péron-Pinvidic, and H. Bunkholt (2021), Rifting of collapsed orogens: Successive incision of continental crust in the proximal margin offshore norway, Tectonics, 40(2), doi: 10.1029/2020tc006283.

Osmundsen, P. T., A. K. Svendby, A. Braathen, B. Bakke, and T. B. Andersen (2023), Fault growth and orthogonal shortening in transtensional supradetachment basins: Insights from the ‘old red’ of western norway, Basin Research, 35(4), 1407–1432, doi: 10.1111/bre.12759.

Peron-Pinvidic, G., G. Manatschal, and P. T. Osmundsen (2013), Structural comparison of archetypal atlantic rifted margins: A review of observations and concepts, Marine and Petroleum Geology, 43, 21–47, doi: 10.1016/j.marpetgeo.2013.02.002.

Peron-Pinvidic, G., P. T. Osmundsen, and H. Bunkholt (2020), The proximal domain of the Mid-Norwegian rifted margin: The trøndelag platform revisited, Tectonophysics, 790, 228,551, doi: 10.1016/j.tecto.2020.228551.

Peron-Pinvidic, G., T. Åkermoen, and L. I. Leivestad (2022), The North-East atlantic Mid-Norwegian rifted margin: Insights from the deep imaging geoex MCG RDI19 dataset, Tectonophysics, 824, 229,225, doi: 10.1016/j.tecto.2022.229225.

Phillips, T. B., C. A.-L. Jackson, R. E. Bell, O. B. Duffy, and H. Fossen (2016), Reactivation of intrabasement structures during rifting: A case study from offshore southern norway, Journal of Structural Geology, 91, 54–73, doi: 10.1016/j.jsg.2016.08.008.

Phillips, T. B., H. Fazlikhani, R. L. Gawthorpe, H. Fossen, C. A.-L. Jackson, R. E. Bell, J. I. Faleide, and A. Rotevatn (2019), The influence of structural inheritance and multiphase extension on rift development, the NorthernNorth sea, Tectonics, 38(12), 4099–4126, doi: 10.1029/2019tc005756.

Reeve, M. T., R. E. Bell, and C. A.-L. Jackson (2014), Origin and significance of intra-basement seismic reflections offshore western norway, Journal of the Geological Society, 171(1), 1–4, doi: 10.1144/jgs2013-020.

Rotevatn, A., T. B. Kristensen, A. K. Ksienzyk, K. Wemmer, G. A. Henstra, I. Midtkandal, S.-A. Grundvåg, and A. Andresen (2018), Structural inheritance and rapid rift-length establishment in a multiphase rift: The east greenland rift system and its caledonian orogenic ancestry, Tectonics, 37(6), 1858–1875, doi: 10.1029/2018tc005018.

Savva, D., M. Pubellier, D. Franke, N. Chamot-Rooke, F. Meresse, S. Steuer, and J. L. Auxietre (2014), Different expressions of rifting on the south china sea margins, Marine and Petroleum Geology, 58, 579–598, doi: 10.1016/j.marpetgeo.2014.05.023.

Serck, C. S., A. Braathen, M. Hassaan, J. I. Faleide, L. Riber, G. Messager, and I. Midtkandal (2022), From metamorphic core complex to crustal scale rollover: Post-Caledonian tectonic development of the utsira high, north sea, Tectonophysics, 836, 229,416, doi: 10.1016/j.tecto.2022.229416.

Stein, S., C. A. Stein, R. Elling, J. Kley, G. R. Keller, M. Wysession, T. Rooney, A. Frederiksen, and R. Moucha (2018), Insights from north america’s failed midcontinent rift into the evolution of continental rifts and passive continental margins, Tectonophysics, 744, 403–421, doi: 10.1016/j.tecto.2018.07.021.

Tomasso, M., J. R. Underhill, R. A. Hodgkinson, and M. J. Young (2008), Structural styles and depositional architecture in the triassic of the ninian and alwyn north fields: Implications for basin development and prospectivity in the northern north sea, Marine and Petroleum Geology, 25(7), 588–605, doi: 10.1016/j.marpetgeo.2007.11.007.

Tsikalas, F., J. I. Faleide, O. Eldholm, and O. A. Blaich (2012), The NE atlantic conjugate margins, in Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, edited by D. G. Roberts, pp. 140–201, Elsevier.

Wang, J., X. Pang, B. Liu, J. Zheng, and H. Wang (2018), The baiyun and liwan sags: Two supradetachment basins on the passive continental margin of the northern south china sea, Marine and Petroleum Geology, 95, 206–218, doi: 10.1016/j.marpetgeo.2018.05.001.

Welford, J. K., P. M. Shannon, B. M. O’Reilly, and J. Hall (2012), Comparison of lithosphere structure across the orphan Basin–Flemish cap and irish atlantic conjugate continental margins from constrained 3D gravity inversions, Journal of the Geological Society, 169(4), 405–420, doi: 10.1144/0016-76492011-114.

Welford, J. K., S. A. Dehler, and T. Funck (2019), Crustal velocity structure across the orphan basin and orphan knoll to the continent–ocean transition, offshore newfoundland, canada, Geophysical Journal International, 221(1), 37–59, doi: 10.1093/gji/ggz575.

Wilson, R. C. L., R. N. Hiscott, M. G. Willis, and F. M. Gradstein (1989), The Lusitanian Basin of West-Central Portugal: Mesozoic and Tertiary Tectonic, Stratigraphic, and Subsidence History, in Extensional Tectonics and Stratigraphy of the North Atlantic Margins, pp. 341–361, American Association of Petroleum Geologists, doi: 10.1306/M46497C22.

Wrona, T., C. Magee, H. Fossen, R. L. Gawthorpe, R. E. Bell, C. A.-L. Jackson, and J. I. Faleide (2019), 3-D seismic images of an extensive igneous sill in the lower crust, Geology, 47(8), 729–733, doi: 10.1130/G46150.1.

Ziegler, P. A. (1989), Evolution of the North Atlantic—An Overview, in Extensional Tectonics and Stratigraphy of the North Atlantic Margins, pp. 111–129, American Association of Petroleum Geologists, doi: 10.1306/M46497C8.

Ziegler, P. A., and S. Cloetingh (2004), Dynamic processes controlling evolution of rifted basins, Earth-Science Reviews, 64(1), 1–50, doi: 10.1016/S0012-8252(03)00041-2.

Zwaan, F., and G. Schreurs (2023), The link between somalian plate rotation and the east african rift system: an analogue modelling study, Solid Earth, 14(8), 823–845, doi: 10.5194/se-14-823-2023.