Total Shortening Estimates Across the Western Greater Caucasus Mountains from Balanced Cross Sections and Area Balancing

Main Article Content

Charles Trexler
Eric Cowgill
Dylan Vasey
Nathan Niemi

Abstract

The Greater Caucasus orogen forms the northern edge of the Arabia-Eurasia collision zone. Although the orogen has long been assumed to exhibit dominantly thick-skinned style deformation via reactivation of high-angle extensional faults, recent work suggests the range may have accommodated several hundred kilometers or more of shortening since its ~30 Ma initiation, and this shortening may be accommodated via thin-skinned, imbricate fan-style deformation associated with underthrusting and/or subduction. However, robust shortening estimates based upon surface geologic observations are lacking. Here we present line-length and area balanced cross sections along two transects across the western Greater Caucasus that provide minimum shortening estimates of 130-200 km. These cross sections demonstrate that a thin-skinned structural style provides a viable explanation for the structure of the Greater Caucasus, and highlight major structures that may accommodate additional, but unconstrained, shortening.

Article Details

How to Cite
Trexler, C., Cowgill, E., Vasey, D., & Niemi, N. (2023). Total Shortening Estimates Across the Western Greater Caucasus Mountains from Balanced Cross Sections and Area Balancing. τeκτoniκa, 1(2), 198–208. https://doi.org/10.55575/tektonika2023.1.2.50
Section
Articles

References

Adamia, S., G. Zakariadze, T. Chkhotua, N. Sadradze, N. Tsereteli, A. Chabukiani, and A. Gventsadze (2011), Geology of the Caucasus: A Review, Turkish Journal of Earth Sciences, 20(5), 489–544, doi: 10.3906/yer-1005-11.

Adamia, S. A., M. B. Lordkipanidze, and G. S. Zakariadze (1977), Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus, Tectonophysics, 40(3), 183–199, doi: 10.1016/0040-1951(77)90065-8.

Alania, V. M., A. O. Chabukiani, R. L. Chagelishvili, O. V. Enukidze, K. O. Gogrichiani, A. N. Razmadze, and N. S. Tsereteli (2017), Growth structures, piggy-back basins and growth strata of the Georgian part of the Kura foreland fold–thrust belt: implications for Late Alpine kinematic evolution, https://www.lyellcollection.org/doi/full/10.1144/SP428.5, doi: 10.1144/SP428.5, accessed: 2023-11-28.

Allen, M., J. Jackson, and R. Walker (2004), Late cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 23(2), doi: 10.1029/2003tc001530.

Anderson, R. B., S. P. Long, B. K. Horton, A. Z. Calle, and V. Ramirez (2017), Shortening and structural architecture of the Andean fold-thrust belt of southern Bolivia (21°S): Implications for kinematic development and crustal thickening of the central Andes, Geosphere, 13(2), 538–558, doi: 10.1130/GES01433.1.

Armstrong, R. L. (1968), Sevier Orogenic Belt in Nevada and Utah, GSA Bulletin, 79(4), 429–458, doi: 10.1130/0016-7606(1968)79[429:SOBINA]2.0.CO;2.

Avdeev, B., and N. A. Niemi (2011), Rapid Pliocene exhumation of the central Greater Caucasus constrained by low-temperature thermochronometry, Tectonics, 30(2), doi: 10.1029/2010TC002808.

Banks, C. J., A. G. Robinson, and M. P. Williams (1997), Chapter 17: Structure and Regional Tectonics of the Achara-Trialet Fold Belt and the Adjacent Rioni and Kartli Foreland Basins, Republic of Georgia, AAPG Memoir 68: Regional and Petroleum Geology of the Black Sea and Surrounding Region, pp. 331–346.

Bazhenov, M. L., and V. S. Burtman (1989), Palaeomagnetism of Upper Cretaceous rocks from the Caucasus and its implications for tectonics, Tectonic Evolution of the Tethyan Region, pp. 217–239.

Boyer, S. E. (1992), Geometric evidence for synchronous thrusting in the southern Alberta and northwest Montana thrust belts, Thrust tectonics, pp. 377–390.

Boyer, S. E., and D. Elliott (1982), Thrust systems, AAPG bulletin, 66, doi: 10.1306/03b5a77d-16d1-11d7-8645000102c1865d.

Chapple, W. M. (1978), Mechanics of thin-skinned fold-and-thrust belts, Geological Society of America bulletin, 89(8), 1189, doi:

1130/0016-7606(1978)89<1189:motfb>2.0.co;2.

Corrado, S., T. Gusmeo, A. Schito, V. Alania, O. Enukidze, E. Conventi, and W. Cavazza (2021), Validating far-field deformation styles from the Adjara-Trialeti fold-and-thrust belt to the Greater Caucasus (Georgia) through multi-proxy thermal maturity datasets, Marine and Petroleum Geology, 130, 105,141, doi: 10.1016/j.marpetgeo.2021.105141.

Cowgill, E., A. M. Forte, N. Niemi, B. Avdeev, A. Tye, C. Trexler, Z. Javakhishvili, M. Elashvili, and T. Godoladze (2016), Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance, Tectonics, 35(12), 2918–2947, doi: 10.1002/2016tc004295.

Darin, M. H., and P. J. Umhoefer (2022), Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time, International geology review, 64(18), 2653–2681, doi: 10.1080/00206814.2022.2048272.

Davis, D., J. Suppe, and F. A. Dahlen (1983), Mechanics of fold-and-thrust belts and accretionary wedges, Journal of geophysical research, 88(B2), 1153–1172, doi: 10.1029/jb088ib02p01153.

Dotduyev, S. I. (1986), The nappe structure of the Great Caucasus (in Russian), Geotektonika, 5, 94–105.

Dzhanelidze, A., and N. Kandelaki (1957), Geological map of the USSR, Caucasus series sheet K-38-XIII, scale 1: 200,000, Ministry of Geology and Mineral Protection, 1369.

Forte, A. M., E. Cowgill, and K. X. Whipple (2014), Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus, Tectonics, 33(11), 2077–2101, doi: 10.1002/2014TC003651.

Forte, A. M., K. R. Gutterman, M. C. van Soest, and K. Gallagher (2022), Building a young mountain range: Insight into the growth of the greater caucasus mountains from detrital zircon (U-Th)/He thermochronology and 10be erosion rates, Tectonics, 41(5), doi: 10.1029/2021tc006900.

Gamkrelidze, I. P. (1986), Geodynamic evolution of the Caucasus and adjacent areas in Alpine time, Tectonophysics, 127(3-4), 261–277, doi: 10.1016/0040-1951(86)90064-8.

Giambiagi, L., F. Bechis, V. García, and A. H. Clark (2008), Temporal and spatial relationships of thick- and thin-skinned deformation: A case study from the malargüe fold-and-thrust belt, southern central andes, Tectonophysics, 459(1), 123–139, doi: 10.1016/j.tecto.2007.11.069.

Gubkina, A. N., and V. A. Ermakov (1989), Geological Map of the USSR, Caucasus Series Sheet K-38-IX, Geological Map of the USSR, USSR Ministry of Geology, Leningrad.

Gunnels, M., G. Yetrimishli, S. Kazimova, and E. Sandvol (2021), Seismotectonic evidence for subduction beneath the Eastern Greater Caucasus, Geophysical Journal International, 224(3), 1825–1834, doi: 10.1093/gji/ggaa522.

Hoth, S., A. Hoffmann-Rothe, and N. Kukowski (2007), Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift, Journal of Geophysical Research, [Solid Earth], 112(B6), doi: 10.1029/2006JB004357.

Kandelaki, D. N., and I. R. Kakhadze (1957), Geological map of the USSR, Caucasus series sheet K-38-XV, scale 1: 200,000, Ministry of Geology and Mineral Protection, 1369.

Leonov, Y. G. (1967), Tectonics of the lower-middle Jurassic sediments in the eastern part of the central Caucasus, Geotectonics/Geotektonika, 1, 152–159.

Long, S., N. McQuarrie, T. Tobgay, and D. Grujic (2011), Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan, GSA Bulletin, 123(7-8), 1427–1447, doi: 10.1130/B30203.1.

Mahoney, L., K. Hill, S. McLaren, and A. Hanani (2017), Complex fold and thrust belt structural styles: Examples from the Greater Juha area of the Papuan Fold and Thrust Belt, Papua New Guinea, Journal of Structural Geology, 100, 98–119, doi: 10.1016/j.jsg.2017.05.010.

Marshak, S., K. Karlstrom, and J. M. Timmons (2000), Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States, Geology, 28(8), 735, doi: 10.1130/0091-7613(2000)28<735:iopefa>2.0.co;2.

McQuarrie, N., and D. J. J. van Hinsbergen (2013), Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction, Geology, 41(3), 315–318, doi: 10.1130/G33591.1.

Meijers, M. J. M., B. Smith, U. Kirscher, M. Mensink, M. Sosson, Y. Rolland, A. Grigoryan, L. Sahakyan, A. Avagyan, C. Langereis, and C. Müller (2015), A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm, Tectonophysics, 644-645, 197–219, doi: 10.1016/j.tecto.2015.01.012.

Mitra, G., and A. J. Sussman (1997), Structural evolution of connecting splay duplexes and their implications for critical taper: an example based on geometry and kinematics of the canyon range culmination, sevier belt, central utah, Journal of Structural Geology, 19(3-4), 503–521, doi: 10.1016/s0191-8141(96)00108-3.

Mosar, J., T. Kangarli, M. Bochud, U. A. Glasmacher, A. Rast, M.-F. Brunet, and M. Sosson (2010), Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan, https://www.lyellcollection.org/doi/10.1144/SP340.12, doi: 10.1144/SP340.12, accessed: 2023-11-28.

Mosar, J., J. Mauvilly, K. Koiava, I. Gamkrelidze, N. Enna, V. Lavrishev, and V. Kalberguenova (2022), Tectonics in the greater caucasus (georgia – russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt, Marine and Petroleum Geology, 140, 105,630, doi: 10.1016/j.marpetgeo.2022.105630.

Mouthereau, F., A. B. Watts, and E. Burov (2013), Structure of orogenic belts controlled by lithosphere age, Nature geoscience, 6(9), 785–789, doi: 10.1038/ngeo1902.

Mumladze, T., A. M. Forte, E. S. Cowgill, C. C. Trexler, N. A. Niemi, M. Burak Yıkılmaz, and L. H. Kellogg (2015), Subducted, detached, and torn slabs beneath the Greater Caucasus, GeoResJ, 5, 36–46, doi: 10.1016/j.grj.2014.09.004.

Perez, N. D., B. K. Horton, N. McQUARRIE, K. Stübner, and T. A. Ehlers (2016), Andean shortening, inversion and exhumation associated with thin- and thick-skinned deformation in southern Peru, Geological magazine, 153(5-6), 1013–1041, doi: 10.1017/S0016756816000121.

Pfiffner, O. A. (2006), Thick-skinned and thin-skinned styles of continental contraction, in Styles of Continental Contraction, pp. 153–177, Geological Society of America, doi: 10.1130/2006.2414(09).

Potapenko, Y. Y. (1964), Geological map of the USSR, Caucasus Series Sheet K-38-I, 1:200,000 scale, Caucasus series sheet K-38-I, scale, 1(200,000).

Reiners, P. W., and M. T. Brandon (2006), USING THERMOCHRONOLOGY TO UNDERSTAND OROGENIC EROSION, Annual review of earth and planetary sciences, 34(1), 419–466, doi: 10.1146/annurev.earth.34.031405.125202.

Rodgers, J. (1949), Evolution of thought on structure of middle and southern Appalachians, AAPG Bulletin, 33(10), 1643–1654. Schevchenko, V. I. (1968), The Kazbek intersection of the central Caucasus (New data and a possible interpretation), Geotectonics/Geotektonika, 1, 50–57.

Scisciani, V., S. Agostini, F. Calamita, P. Pace, A. Cilli, I. Giori, and W. Paltrinieri (2014), Positive inversion tectonics in foreland fold-and-thrust belts: A reappraisal of the Umbria–Marche Northern Apennines (Central Italy) by integrating geological and geophysical data, Tectonophysics, 637, 218–237, doi: 10.1016/j.tecto.2014.10.010.

Seguret, M., and M. Daignieres (1986), Crustal scale balanced cross-sections of the Pyrenees; discussion, Tectonophysics, 129(1), 303–318, doi: 10.1016/0040-1951(86)90258-1.

Sobornov, K. O. (1994), Structure and petroleum potential of the Dagestan thrust belt, northeastern Caucasus, Russia, Bulletin of Canadian Petroleum Geology, 42(3), 352–364.

Sobornov, K. O. (1996), Lateral variations in structural styles of tectonic wedging in the northeastern Caucasus, Russia, Bulletin of Canadian Petroleum Geology, 44(2), 385–399.

Sokhadze, G., M. Floyd, T. Godoladze, R. King, E. S. Cowgill, Z. Javakhishvili, G. Hahubia, and R. Reilinger (2018), Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser–Greater Caucasus continental collision, Earth and planetary science letters, 481, 154–161, doi: 10.1016/j.epsl.2017.10.007.

Somin, M. L., and A. A. Belov (1967), On the tectonic history of the southern slope of the Greater Caucasus, Geotectonics/Geotektonika, 1, 37–39.

Stahl, T. A., E. Cowgill, G. Boichenko, D. A. Vasey, and T. Godoladze (2022), Recent surface rupturing earthquakes along the south flank of the greater caucasus near tbilisi, georgia, Bulletin of the Seismological Society of America, 112(4), 2170–2188, doi: 10.1785/0120210267.

Sukhishvili, L., A. M. Forte, G. Merebashvili, J. Leonard, K. X. Whipple, Z. Javakhishvili, A. Heimsath, and T. Godoladze (2021), Active deformation and Plio-Pleistocene fluvial reorganization of the western Kura fold–thrust belt, Georgia: implications for the evolution of the Greater Caucasus Mountains, Geological magazine, 158(4), 583–597, doi: 10.1017/S0016756820000709.

Tibaldi, A., V. Alania, F. L. Bonali, O. Enukidze, N. Tsereteli, N. Kvavadze, and O. Varazanashvili (2017), Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia, Journal of Structural Geology, 96, 35–53, doi: 10.1016/j.jsg.2017.01.005.

Trexler, C. C., E. Cowgill, J. Q. G. Spencer, and T. Godoladze (2020), Rate of active shortening across the southern thrust front of the Greater Caucasus in western Georgia from kinematic modeling of folded river terraces above a listric thrust, Earth and planetary science letters, 544, 116,362, doi: 10.1016/j.epsl.2020.116362.

Trexler, C. C., E. Cowgill, N. A. Niemi, D. A. Vasey, and T. Godoladze (2022), Tectonostratigraphy and major structures of the Georgian Greater Caucasus: Implications for structural architecture, along-strike continuity, and orogen evolution, Geosphere, 18(1), 211–240, doi: 10.1130/GES02385.1.

Tye, A. R., N. A. Niemi, R. T. Safarov, F. A. Kadirov, and G. R. Babayev (2021), Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments, Basin Research, 33(2), 933–967, doi: 10.1111/bre.12499.

Tye, A. R., N. A. Niemi, E. Cowgill, F. A. Kadirov, and G. R. Babayev (2022), Diverse deformation mechanisms and lithologic controls in an active orogenic wedge: Structural geology and thermochronometry of the eastern greater caucasus, Tectonics, 41(12), e2022TC007,349, doi: 10.1029/2022tc007349.

van der Boon, A., D. J. J. van Hinsbergen, M. Rezaeian, D. Gürer, M. Honarmand, D. Pastor-Galán, W. Krijgsman, and C. G. Langereis (2018), Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction, Earth and planetary science letters, 482, 454–469, doi: 10.1016/j.epsl.2017.11.025.

van Hinsbergen, D. J. J., T. H. Torsvik, S. M. Schmid, L. C. Maţenco, M. Maffione, R. L. M. Vissers, D. Gürer, and W. Spakman (2020), Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Research, 81, 79–229, doi: 10.1016/j.gr.2019.07.009.

Vasey, D. A., E. Cowgill, S. M. Roeske, N. A. Niemi, T. Godoladze, I. Skhirtladze, and S. Gogoladze (2020), Evolution of the greater caucasus basement and formation of the main caucasus thrust, georgia, Tectonics, 39(3), e2019TC005,828, doi: 10.1029/2019tc005828.

Vasey, D. A., E. Cowgill, and K. M. Cooper (2021), A preliminary framework for magmatism in modern continental back-arc basins and its application to the Triassic-Jurassic tectonic evolution of the caucasus, Geochemistry, Geophysics, Geosystems, 22(6), e2020GC009,490, doi: 10.1029/2020gc009490.

Vincent, S. J., A. C. Morton, A. Carter, S. Gibbs, and T. G. Barabadze (2007), Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia–Eurasia collision, Terra nova, 19(2), 160–166, doi: 10.1111/j.1365-3121.2007.00731.x.

Vincent, S. J., A. Carter, V. A. Lavrishchev, S. P. Rice, T. G. Barabadze, and N. Hovius (2011), The exhumation of the western Greater Caucasus: a thermochronometric study, Geological magazine, 148(1), 1–21, doi: 10.1017/S0016756810000257.

Vincent, S. J., W. Braham, V. A. Lavrishchev, J. R. Maynard, and M. Harland (2016), The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region, Tectonics, 35(12), 2948–2962, doi: 10.1002/2016tc004204.

Vincent, S. J., M. L. Somin, A. Carter, G. Vezzoli, M. Fox, and B. Vautravers (2020), Testing models of cenozoic exhumation in the western greater caucasus, Tectonics, 39(2), e2018TC005,451, doi: 10.1029/2018tc005451.

Yegorova, T., and V. Gobarenko (2010), Structure of the earth’s crust and upper mantle of the west- and East-Black sea basins revealed from geophysical data and its tectonic implications, Geological Society special publication, 340(1), 23–42, doi: 10.1144/sp340.3.

Zonenshain, L. P., and X. Le Pichon (1986), Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins, Tectonophysics, 123(1-4), 181–211.

Zor, E. (2008), Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus, Geophysical Journal International, 175(3), 1273–1282, doi: 10.1111/j.1365-246X.2008.03946.x.