Mesoproterozoic Strike-Slip Faulting within the Åland Rapakivi Batholith, Southwestern Finland
Main Article Content
Abstract
Paleostress inversion analysis of outcrop data from brittle fault structures within the Mesoproterozoic 1.58 Ga Åland rapakivi granite, southwestern Finland, revealed two separate strike-slip faulting stages. Stage 1 is dominated by dextral slip along E–W-trending faults under WNW–ESE to NNW–SSE compression, whereas Stage 2 displays less prominent faulting localized in an orthogonal network of N–S and E–W trending faults that developed under NE–SW compression. Relative age constraints indicate that faulting occurred between 1.58 and 0.5 Ga, and further correlation with previously published results indicate a 1.55–1.4 Ga age for Stage 1 faulting, while Stage 2 is compatible with previously described fault reactivations between 1.3–1.2 Ga. To place the results of the fault analyses in a wider framework, we conducted a regional structural interpretation using bathymetric, topographic, and geophysical datasets and reviewed previously published results. Based on the above, we attribute the emplacement of the 1.6–1.5 Ga rapakivi granites and the subsequent development of the Mesoproterozoic sedimentary basins to the reactivation of inherited Paleoproterozoic shear zones during Mesoproterozoic crustal extension. As such, this study contributes towards understanding the relationships between magmatism and strain localisation in continental (failed) rift settings.
Article Details
References
Aaltonen, I., K. Front, S. Gehör, and E. Sahlstedt (2018), Hydrothermal Alteration of Bedrock at Olkiluoto, Posiva Report 2018–03, Tech. rep., Posiva Oy, Eurajoki, Finland.
Abdullah, A., S. Nassr, and A. Ghaleeb (2013), Remote sensing and geographic information system for fault segments mapping a study from taiz area, yemen., Journal of Geological Research, 2013, 1–16, doi: 10.1155/2013/201757.
Angelier, J. (1979), Determination of the mean principal directions of stresses for a given fault population, Tectonophysics, 56(3-4), T17–T26, doi: 10.1016/0040-1951(79)90081-7.
Angelier, J. (1984), Tectonic analysis of fault slip data sets, Journal of Geophysical Research: Solid Earth, 89(B7), 5835–5848, doi: 10.1029/JB089iB07p05835.
Angelier, J. (1994), Continental deformation, chap. Fault slip analysis and palaeostress reconstruction, pp. 53–100, Pergamon press, Oxford, UK.
Baer, G., M. Beyth, and Z. Reches (1994), Dikes emplaced into fractured basement, timna igneous complex, israel, Journal of Geophysical Research: Solid Earth, 99(B12), 24,039–24,050, doi: 10.1029/94JB02161.
Bai, T., L. Maerten, M. R. Gross, and A. Aydin (2002), Orthogonal cross joints: do they imply a regional stress rotation?, Journal of structural geology, 24(1), 77–88, doi: 10.1016/S0191-8141(01)00050-5.
Bemis, S. P., S. Micklethwaite, D. Turner, M. R. James, S. Akciz, S. T. Thiele, and H. A. Bangash (2014), Ground-based and uav-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, Journal of structural geology, 69, 163–178, doi: 10.1016/j.jsg.2014.10.007.
Bergman, L., R. Tynni, and B. Winterhalter (1982), Paleozoic sediments in the rapakivi area of the Åland Islands, vol. 317, 7–34 pp., Geologinen tutkimuslaitos.
Bingen, B., O. Nordgulen, G. Viola, et al. (2008a), A four-phase model for the sveconorwegian orogeny, sw scandinavia, Norsk geologisk tidsskrift, 88(1), 43–72.
Bingen, B., J. Andersson, U. Söderlund, and C. Möller (2008b), The mesoproterozoic in the nordic countries, Episodes Journal of International Geoscience, 31(1), 29–34, doi: 10.18814/epiiugs/2008/v31i1/005.
Bingham, C. (1974), An antipodally symmetric distribution on the sphere, The Annals of Statistics, pp. 1201–1225, doi: 10.1214/aos/1176342874.
Blenkinsop, T. G. (2006), Kinematic and dynamic fault slip analyses: implications from the surface rupture of the 1999 chi-chi, taiwan, earthquake, Journal of Structural Geology, 28(6), 1040–1050, doi: 10.1016/j.jsg.2006.03.011.
Bogdanova, S., B. Bingen, R. Gorbatschev, T. Kheraskova, V. Kozlov, V. Puchkov, and Y. A. Volozh (2008), The east european craton (baltica) before and during the assembly of rodinia, Precambrian Research, 160(1-2), 23–45, doi: 10.1016/j.precamres.2007.04.024.
Bott, M. H. P. (1959), The mechanics of oblique slip faulting, Geological magazine, 96(2), 109–117, doi: 10.1017/S0016756800059987.
Branigan, N. (1987), The role of shearing in the proterozoic development of the åland archipelago, sw finland, Bulletin of the Geological Society of Finland, 59, 117–128, doi: 10.17741/BGSF/59.2.005.
Buntin, S., A. Malehmir, H. Koyi, K. Högdahl, M. Malinowski, S. Å. Larsson, H. Thybo, C. Juhlin, A. Korja, and A. Górszczyk (2019), Emplacement and 3d geometry of crustal-scale saucer-shaped intrusions in the fennoscandian shield, Scientific Reports, 9(1), 10,498, doi: 10.1038/s41598-019-46837-x.
Delvaux, D., and B. Sperner (2003), New aspects of tectonic stress inversion with reference to the tensor program, Geological Society, London, Special Publications, 212(1), 75–100, doi: 10.1144/GSL.SP.2003.212.01.0.
Delvaux, D., R. Moeys, G. Stapel, C. Petit, K. Levi, A. Miroshnichenko, V. Ruzhich, and V. San’kov (1997), Paleostress reconstructions and geodynamics of the baikal region, central asia, part 2. cenozoic rifting, Tectonophysics, 282(1-4), 1–38, doi: 10.1016/S0040-1951(97)00210-2.
Dyer, R. (1988), Using joint interactions to estimate paleostress ratios, Journal of Structural Geology, 10(7), 685–699, doi: 10.1016/0191-8141(88)90076-4.
Ehlers, C., and M. Ehlers (1977), Shearing and multiple intrusion in the diabases of aland archipelago, SW Finland.
Ehlers, C., A. Lindroos, and O. Selonen (1993), The late svecofennian granite-migmatite zone of southern finland—a belt of transpressive deformation and granite emplacement, Precambrian research, 64(1-4), 295–309, doi: 10.1016/0301-9268(93)90083-E.
Elminen, T., M.-L. Airo, R. Niemelä, M. Pajunen, M. Vaarma, P. Wasenius, and M. Wennerström (2008), Fault structures in the helsinki area, southern finland, Geological survey of Finland, Special Paper, 47, 185–213.
EMODnet (2018), Emodnet digital bathymetry (dtm 2018), https://doi.org/10.12770/18FF0D48-B203-4A65-94A9-5FD8B0EC35F6, doi: 10.12770/18FF0D48-B203-4A65-94A9-5FD8B0EC35F6.
English, J. M. (2012), Thermomechanical origin of regional fracture systems, AAPG bulletin, 96(9), 1597–1625, doi: 10.1306/01021211018.
Engström, J., A. Kärki, S. Paulamäki, and I. Mänttäri (2022), Palaeoproterozoic structural evolution of polyphase migmatites in olkiluoto, sw finland, Bulletin of the Geological Society of Finland, 94, 119–143, doi: 10.17741/bgsf/94.2.002.
Ezati, M., E. Gholami, and S. M. Mousavi (2020), Paleostress regime reconstruction based on brittle structure analysis in the shekarab mountain, eastern iran, Arabian Journal of Geosciences, 13, 1–18, doi: 10.1007/s12517-020-06235-4.
Friese, N., A. Vollbrecht, B. Leiss, and O. Jacke (2011), Cambrian sedimentary dykes in the proterozoic basement of the västervik area (southeast sweden): episodic formation inferred from macro-and microfabrics, International Journal of Earth Sciences, 100, 741–752, doi: 10.1007/s00531-009-0508-3.
Geological Survey of Finland (2001), Geological map of the fennoscandian shield 1:1 000 000, https://hakku.gtk.fi/en/ locations/search.
Geological Survey of Finland (2007a), Aeromagnetic raster data of finland, https://hakku.gtk.fi/en/locations/search.
Geological Survey of Finland (2007b), Aeromagnetic raster data of finland, https://hakku.gtk.fi/en/locations/search.
Gillespie, P., J. Walsh, J. Watterson, C. Bonson, and T. Manzocchi (2001), Scaling relationships of joint and vein arrays from the burren, co. clare, ireland, Journal of Structural Geology, 23(2-3), 183–201, doi: 10.1016/S0191-8141(00)00090-0.
Haapala, I., and O. T. Rämö (1992), Tectonic setting and origin of the proterozoic rapakivi granites of southeastern fennoscandia, Earth and environmental science transactions of the Royal Society of Edinburgh, 83(1-2), 165–171, doi: 10.1017/S0263593300007859.
Hall, A. M., N. Putkinen, S. Hietala, E. Lindsberg, and M. Holma (2021), Ultra-slow cratonic denudation in finland since 1.5 ga indicated by tiered unconformities and impact structures, Precambrian Research, 352, 106,000, doi: 10.1016/j.precamres.2020.106000.
Hardacre, K., and P. Cowie (2003), Variability in fault size scaling due to rock strength heterogeneity: a finite element investigation, Journal of structural geology, 25(10), 1735–1750, doi: 10.1016/S0191-8141(02)00205-5.
Hauta-niemi, H., M. Kurimo, J. Multala, H. Levaniemi, and J. Vironmaki (2005), The” three in one” aerogeophysical concept of gtk in 2004, Geological survey of Finland, Special Paper, 39, 21.
Healy, D., R. R. Jones, and R. E. Holdsworth (2006), Three-dimensional brittle shear fracturing by tensile crack interaction, Nature, 439(7072), 64–67, doi: 10.1038/nature04346.
Heeremans, and Wijbrans (1999), Late proterozoic tectonic events in southern finland, constrained by 40ar/39ar incremental heating and single spot fusion experiments on k-feldspars, Terra Nova, 11(5), 216–222, doi: 10.1046/j.1365-3121.1999.00250.x.
Heeremans, M., H. Stel, P. Van der Beek, and A. Lankreijer (1996), Tectono-magmatic control on vertical dip slip basement faulting: An example from the fennoscandian shield, Terra Nova, 8(2), 129–140, doi: 10.1111/j.1365-3121.1996.tb00737.x.
Hermansson, T., M. B. Stephens, F. Corfu, L. M. Page, and J. Andersson (2008), Migratory tectonic switching, western svecofennian orogen, central sweden: Constraints from u/pb zircon and titanite geochronology, Precambrian Research, 161(3-4), 250–278, doi: 10.1016/j.precamres.2007.08.008.
Hestnes, Å., D. Gasser, T. Scheiber, J. Jacobs, R. van der Lelij, J. Schönenberger, and A. K. Ksienzyk (2022), The brittle evolution of western norway–a space-time model based on fault mineralizations, k–ar fault gouge dating and paleostress analysis, Journal of Structural Geology, 160, 104,621, doi: 10.1016/j.jsg.2022.104621.
Högdahl, K., U. B. Andersson, and O. Eklund (2004), The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution, vol. 37, Geological survey of Finland Espoo.
Hou, G., M. Santosh, X. Qian, G. S. Lister, and J. Li (2008), Tectonic constraints on 1.3~ 1.2 ga final breakup of columbia supercontinent from a giant radiating dyke swarm, Gondwana Research, 14(3), 561–566, doi: 10.1016/j.gr.2008.03.005.
Jolly, R., and D. Sanderson (1997), A mohr circle construction for the opening of a pre-existing fracture, Journal of Structural Geology, 19(6), 887–892, doi: 10.1016/S0191-8141(97)00014-X.
Kohonen, J., and O. Rämö (2005), Sedimentary rocks, diabases, and late cratonic evolution, Developments in Precambrian geology, pp. 563–603, doi: 10.1016/S0166-2635(05)80014-3.
Kohonen, J., P. Pihlaja, H. Kujala, and J. Marmo (1993), Sedimentation of the jotnian satakunta sandstone, western finland, Bulletin-Geological survey of Finland, (369).
Korja, A., and P. Heikkinen (1996), Proterozoic extensional tectonics of the central fennoscandian shield: Results from the babel experiment, GFF, 118(S4), 94–94.
Korja, A., T. Korja, U. Luosto, and P. Heikkinen (1993), Seismic and geoelectric evidence for collisional and extensional events in the fennoscandian shield implications for precambrian crustal evolution, Tectonophysics, 219(1-3), 129–152, doi: 10.1016/0040-1951(93)90292-R.
Korja, A., P. Heikkinen, and S. Aaro (2001), Crustal structure of the northern baltic sea palaeorift, Tectonophysics, 331(4), 341–358, doi: 10.1016/S0040-1951(00)00290-0.
Kosunen, P. (1999), The rapakivi granite plutons of bodom and obbnas, southern finland: petrography and geochemistry, BULLETIN-GEOLOGICAL SOCIETY OF FINLAND, 71(2), 275–304, doi: 10.17741/bgsf/71.2.005.
Kraatz, S. (2013), Airiston hiertovyöhyke - duktiilista deformaatiosta hauraiden rakenteiden ympäristöksi, Master’s thesis, Turku University, Turku, Finland.
Kraatz, S. (2022), Analysis of the brittle structural framework of the boxö-vårdö zone, as the northern extension of the south finland shear zone, northeastern åland, Master’s thesis, Åbo Akademi University, Turku, Finland, available at https://www.doria.fi/handle/10024/185518.
Krabbendam, M., and T. Bradwell (2014), Quaternary evolution of glaciated gneiss terrains: pre-glacial weathering vs. glacial erosion, Quaternary Science Reviews, 95, 20–42, doi: 10.1016/j.quascirev.2014.03.013.
Lacombe, O. (2012), Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? a critical discussion, Comptes Rendus Geoscience, 344(3-4), 159–173, doi: 10.1016/j.crte.2012.01.006.
Lahtinen, R., A. Korja, and M. Nironen (2005), Paleoproterozoic tectonic evolution, Developments in Precambrian geology, pp. 481–532, doi: 10.1016/S0166-2635(05)80012-X.
Lahtinen, R., A. Korja, M. Nironen, and P. Heikkinen (2009), Palaeoproterozoic accretionary processes in fennoscandia, Geological Society, London, Special Publications, 318(1), 237–256, doi: 10.1144/SP318.8.
Laitakari, I., T. Rämö, V. Suominen, M. Niin, K. Stepanov, and A. Amantov (1996), Subjotnian: Rapakivi granites and related rocks in the surroundings of the gulf of finland, Geological survey of Finland, Special Paper, pp. 59–98.
Larson, Tullborg, Cederbom, and Stiberg (1999), Sveconorwegian and caledonian foreland basins in the baltic shield revealed by fission-track thermochronology, Terra Nova, 11(5), 210–215, doi: 10.1046/j.1365-3121.1999.00249.x.
Li, Z.-X., S. Bogdanova, A. Collins, A. Davidson, B. De Waele, R. Ernst, I. Fitzsimons, R. Fuck, D. Gladkochub, J. Jacobs, et al. (2008), Assembly, configuration, and break-up history of rodinia: a synthesis, Precambrian research, 160(1-2), 179–210, doi: 10.1016/j.precamres.2007.04.021.
Luosto, U., T. Tiira, H. Korhonen, I. Azbel, V. Burmin, A. Buyanov, I. Kosminskaya, V. Ionkis, and N. Sharov (1990), Crust and upper mantle structure along the dss baltic profile in se finland, Geophysical Journal International, 101(1), 89–110, doi: 10.1111/j.1365-246X.1990.tb00760.x.
Maerten, L., P. Gillespie, and D. D. Pollard (2002), Effects of local stress perturbation on secondary fault development, Journal of Structural Geology, 24(1), 145–153, doi: 10.1016/S0191-8141(01)00054-2.
Marchesini, B., P. S. Garofalo, L. Menegon, J. Mattila, and G. Viola (2019), Fluid-mediated, brittle–ductile deformation at seismogenic depth–part 1: Fluid record and deformation history of fault veins in a nuclear waste repository (olkiluoto island, finland), Solid Earth, 10(3), 809–838, doi: 10.5194/se-10-809-2019.
Marrett, R., and R. W. Allmendinger (1990), Kinematic analysis of fault-slip data, Journal of structural geology, 12(8), 973–986, doi: 10.1016/0191-8141(90)90093-E.
Marrett, R., and D. C. Peacock (1999), Strain and stress, Journal of structural geology, 21(8-9), 1057–1063, doi: 10.1016/S0191-8141(99)00020-6.
Mattila, J., and G. Viola (2014), New constraints on 1.7 gyr of brittle tectonic evolution in southwestern finland derived from a structural study at the site of a potential nuclear waste repository (olkiluoto island), Journal of Structural Geology, 67, 50–74, doi: https://doi.org/10.1016/j.jsg.2014.07.003.
McKeagney, C., C. Boulter, R. Jolly, and R. Foster (2004), 3-d mohr circle analysis of vein opening, indarama lode-gold deposit, zimbabwe: implications for exploration, Journal of Structural Geology, 26(6), 1275–1291, doi: 10.1016/j.jsg.2003.11.001.
Morris, A., D. A. Ferrill, and D. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24(3), 275–278, doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2.
Munier, R., and C. J. Talbot (1993), Segmentation, fragmentation and jostling of cratonic basement in and near Äspö, southeast sweden, Tectonics, 12(3), 713–727, doi: 10.1029/92TC02722.
Nadan, B. J., and T. Engelder (2009), Microcracks in New England granitoids: A record of thermoelastic relaxation during exhumation of intracontinental crust, GSA Bulletin, 121(1-2), 80–99, doi: 10.1130/B26202.1.
National Land Survey of Finland (2019), Laser scanning 2008-2019 by national land survey of finland, https://www. maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/laser-scanning-data.
Nironen, M. (1997), The svecofennian orogen: a tectonic model, Precambrian Research, 86(1), 21–44, doi: 10.1016/S0301-9268(97)00039-9.
Nordbäck, N., and N. Ovaskainen (2022), Getaberget drone orthomosaic dataset, doi: 10.5281/ZENODO.4719627.
Nordbäck, N., J. Mattila, H. Zwingmann, and G. Viola (2022), Precambrian fault reactivation revealed by structural and k-ar geochronological data from the spent nuclear fuel repository in olkiluoto, southwestern finland, Tectonophysics, 824, 229,208, doi: 10.1016/j.tecto.2022.229208.
Nordbäck, N., N. Ovaskainen, M. Markovaara-Koivisto, P. Skyttä, A. Ojala, J. Engström, and C. Nixon (2023), Multiscale mapping and scaling analysis of the censored brittle structural framework within the crystalline bedrock of southern finland., Bulletin of the Geological Society of Finland, 95(1), doi: 10.17741/bgsf/95.1.001.
Nyberg, B., C. W. Nixon, and D. J. Sanderson (2018), Networkgt: A gis tool for geometric and topological analysis of two-dimensional fracture networks, Geosphere, 14(4), 1618–1634, doi: 10.1130/GES01595.1.
O’Leary, D. W., J. D. Friedman, and H. A. Pohn (1976), Lineament, linear, lineation: Some proposed new standards for old terms, GSA Bulletin, 87(10), 1463–1469, doi: 10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2.
Ovaskainen, N., N. Nordbäck, P. Skyttä, and J. Engström (2022), A new subsampling methodology to optimize the characterization of two-dimensional bedrock fracture networks, Journal of Structural Geology, 155, 104,528, doi: 10.1016/j.jsg.2022.104528.
Ovaskainen, N., P. Skyttä, N. Nordbäck, and J. Engström (2023), Detailed investigation of multi-scale fracture networks in glacially abraded crystalline bedrock at Åland islands, finland, Solid Earth, 14(6), 603–624, doi: 10.5194/se-14-603-2023.
Pajunen, M., M.-L. Airo, T. Elminen, I. Mänttäri, R. Niemelä, M. Vaarma, P. Wasenius, and M. Wennerström (2008), Tectonic evolution of the svecofennian crust in southern finland, Geological Survey of Finland, Special Paper, 47, 15–160.
Parfrey, L. W., D. J. G. Lahr, A. H. Knoll, and L. A. Katz (2011), Estimating the timing of early eukaryotic diversification
with multigene molecular clocks, Proceedings of the National Academy of Sciences, 108(33), 13,624–13,629, doi: 10.1073/pnas.1110633108.
Pascal, C. (2021), Paleostress inversion techniques: methods and applications for tectonics, Elsevier.
Peacock, D., D. Sanderson, and A. Rotevatn (2018), Relationships between fractures, Journal of Structural Geology, 106, 41–53, doi: 10.1016/j.jsg.2017.11.010.
Peacock, D. C. P., C. Nixon, A. Rotevatn, D. Sanderson, and L. Zuluaga (2016), Glossary of fault and other fracture networks, Journal of Structural Geology, 92, 12–29, doi: 10.1016/j.jsg.2016.09.008.
Pitkälä, I. (2019), Shear zones and structural analysis of the loimaa area, sw finland, Master’s thesis, University of Turku, Turku, Finland, available at https://urn.fi/URN:NBN:fi-fe2019090627211.
Pokki, J., J. Kohonen, R. Lahtinen, O. Rämö, and T. Andersen (2013), Petrology and Provenance of the Mesoproterozoic Satakunta Formation, SW Finland, Tutkimusraportti, Geological Survey of Finland.
Pollard, D. D. (1987), Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, Fracture mechanics of rock, pp. 277–349, doi: 10.1016/B978-0-12-066266-1.50013-2.
Pollard, D. D., and A. Aydin (1988), Progress in understanding jointing over the past century, Geological Society of America Bulletin, 100(8), 1181–1204, doi: 10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2.
Prando, F., L. Menegon, M. Anderson, B. Marchesini, J. Mattila, and G. Viola (2020), Fluid-mediated, brittle–ductile deformation at seismogenic depth–part 2: stress history and fluid pressure variations in a shear zone in a nuclear waste repository (olkiluoto island, finland), Solid Earth, 11(2), 489–511, doi: 10.5194/se-11-489-2020.
Rasmussen, B., J. R. Muhling, J.-W. Zi, H. Tsikos, and W. W. Fischer (2020), A 1.25 ga depositional age for the “paleoproterozoic” mapedi red beds, kalahari manganese field, south africa: New constraints on the timing of oxidative weathering and hematite mineralization, Geology, 48(1), 44–48, doi: 10.1130/G46707.1.
Riller, U., M. Clark, H. Daxberger, D. Doman, I. Lenauer, S. Plath, and T. Santimano (2017), Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation, Journal of Structural Geology, 101, 80–95, doi: 10.1016/j.jsg.2017.06.013.
Roberts, N. M. (2013), The boring billion?–lid tectonics, continental growth and environmental change associated with the columbia supercontinent, Geoscience Frontiers, 4(6), 681–691, doi: 10.1016/j.gsf.2013.05.004.
Rämö, O., and I. Haapala (1995), One hundred years of rapakivi granite, Mineralogy and Petrology, 52, 129–185, doi: 10.1007/BF01163243.
Rämö, O., and I. Haapala (2005), Chapter 12 rapakivi granites, in Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, Developments in Precambrian Geology, vol. 14, edited by M. Lehtinen, P. Nurmi, and O. Ramö, pp. 533–562, Elsevier, doi: 10.1016/S0166-2635(05)80013-1.
Saintot, A., M. Stephens, G. Viola, and Ø. Nordgulen (2011), Brittle tectonic evolution and paleostress field reconstruction in the southwestern part of the fennoscandian shield, forsmark, sweden, Tectonics, 30(4), doi: 10.1029/2010TC002781.
Salminen, P. E., P. Hölttä, R. Lahtinen, and M. Sayab (2022), Monazite record for the paleoproterozoic svecofennian orogeny, se finland: An over 150-ma spread of monazite dates, Lithos, 416, 106,654, doi: 10.1016/j.lithos.2022.106654.
Scheiber, T., and G. Viola (2018), Complex bedrock fracture patterns: A multipronged approach to resolve their evolution in space and time, Tectonics, 37(4), 1030–1062, doi: 10.1002/2017TC004763.
Scholz, C. (2007), Fault mechanics, Crust and Lithosphere Dynamics, 6, 441–483, doi: 10.1016/B978-0-444-53802-4.00119-6. Sibson, R. (1977), Fault rocks and fault mechanisms, Journal of the Geological Society, 133(3), 191–213, doi: 10.1144/gsjgs.133.3.0191.
Sibson, R. H. (1981), Fluid flow accompanying faulting: field evidence and models, Earthquake prediction: an international review, 4, 593–603, doi: 10.1029/ME004p0593.
Sjöström, H., and K. S. Persson (2001), Deformation zones in eastern bergslagen (uppland-sörmland).
Skyttä, P., J. Kinnunen, J.-P. Palmu, and K. Korkka-Niemi (2015), Bedrock structures controlling the spatial occurrence and geometry of 1.8 ga younger glacifluvial deposits—example from first salpausselkä, southern finland, Global and Planetary Change, 135, 66–82, doi: 10.1016/j.gloplacha.2015.10.007.
Skyttä, P., N. Ovaskainen, N. Nordbäck, J. Engström, and J. Mattila (2021), Fault-induced mechanical anisotropy and its effects on fracture patterns in crystalline rocks, Journal of Structural Geology, 146, 104,304, doi: 10.1016/j.jsg.2021.104304.
Skyttä, P., N. Nordbäck, A. Ojala, N. Putkinen, I. Aaltonen, J. Engström, J. Mattila, and N. Ovaskainen (2023), The interplay of bedrock fractures and glacial erosion in defining the present-day land surface topography in mesoscopically isotropic crystalline rocks, Earth Surface Processes and Landforms, doi: 10.1002/esp.5596.
Soesoo, A., V. Puura, J. Kirs, V. Petersell, M. Niin, and T. All (2004), Outlines of the precambrian basement of estonia, in Proceedings of the Estonian Academy of Sciences, Geology, vol. 53, pp. 149–164.
Soliman, A., and L. Han (2019), Effects of vertical accuracy of digital elevation model (dem) data on automatic lineaments extraction from shaded dem, Advances in space research, 64(3), 603–622, doi: 10.1016/j.asr.2019.05.009.
Sornette, A., P. Davy, and D. Sornette (1993), Fault growth in brittle-ductile experiments and the mechanics of continental collisions, Journal of Geophysical Research: Solid Earth, 98(B7), 12,111–12,139, doi: 10.1029/92JB01740.
Sperner, B., and P. Zweigel (2010), A plea for more caution in fault–slip analysis, Tectonophysics, 482(1-4), 29–41, doi: 10.1016/j.tecto.2009.07.019.
Stephens, M. B., and S. Bergman (2020), Chapter 2 regional context and lithotectonic framework of the 2.0–1.8 ga svecokarelian orogen, eastern sweden, Geological Society, London, Memoirs, 50(1), 19–26, doi: 10.1144/M50-2017-2.
Suominen, V. (1991), The chronostratigraphy of southwestern finland with special reference to postjotnian and subjotnian diabases, Bulletin-Geological Survey of Finland, (356).
Tartaglia, G., G. Viola, A. Ceccato, S. Bernasconi, R. van der Lelij, and T. Scheiber (2020), Multiphase brittle tectonic evolution of the mid-norwegian margin, central norway, reconstructed by remote sensing, paleostress inversion and k-ar fault rock dating, in EGU General Assembly Conference Abstracts, p. 5438, doi: 10.5194/egusphere-egu2020-5438.
Tillberg, M., H. Drake, T. Zack, E. Kooijman, M. J. Whitehouse, and M. E. Åström (2020), In situ rb-sr dating of slickenfibres in deep crystalline basement faults, Scientific reports, 10(1), 562, doi: 10.1038/s41598-019-57262-5.
Tillberg, M., H. Drake, T. Zack, J. Hogmalm, E. Kooijman, and M. Åström (2021), Reconstructing craton-scale tectonic events via in situ rb-sr geochronology of poly-phased vein mineralization, Terra Nova, 33(5), 502–510, doi: 10.1111/ter.12542.
Torvela, T., and C. Ehlers (2010), From ductile to brittle deformation: structural development and strain distribution along a crustal-scale shear zone in sw finland, International Journal of Earth Sciences, 99, 1133–1152, doi: 10.1007/s00531-009-0451-3.
Torvela, T., and M. Kurhila (2020), How does orogenic crust deform? evidence of crustal-scale competent behaviour within the partially molten middle crust during orogenic compression, Precambrian Research, 342, 105,670, doi: 10.1016/j.precamres.2020.105670.
Torvela, T., I. Mänttäri, and T. Hermansson (2008), Timing of deformation phases within the south finland shear zone, sw finland, Precambrian Research, 160(3-4), 277–298, doi: 10.1016/j.precamres.2007.08.002.
Tynni, R. (1982), On paleozoic microfossils in clastic dykes in the aland islands and in the core samples of lumparn. in: Paleozoic sediments in the rapakivi area of the aland islands, Bulletin of the Geological Society of Finland.
Vaasjoki, M. (1977), Rapakivi granites and other postorogenic rocks in finland: their age and the lead isotopic composition of certain associated galena mineralizations, Geol. Surv. Finl., Bull.;(Finland), 294.
Vaasjoki, M. (1996), Explanation to the geochronological map of southern Finland: The development of the continental crust with special reference to the Svecofennian orogeny, vol. 135, Geological Survey of Finland.
Väisänen, M., and P. Hölttä (1999), Structural and metamorphic evolution of the turku migmatite complex, southwestern finland, Bulletin of the Geological Society of Finland, 71(1), 177–218.
Väisänen, M., and P. Skyttä (2007), Late svecofennian shear zones in southwestern finland, Gff, 129(1), 55–64, doi: 10.1080/11035890701291055.
Van Balen, R., and M. Heeremans (1998), Middle proterozoic–early palaeozoic evolution of central baltoscandian intracratonic basins: evidence for asthenospheric diapirs, Tectonophysics, 300(1-4), 131–142, doi: 10.1016/S0040-1951(98)00237-6.
Vigneresse, J. L. (2005), The specific case of the mid-proterozoic rapakivi granites and associated suite within the context of the columbia supercontinent, Precambrian research, 137(1-2), 1–34, doi: 10.1016/j.precamres.2005.01.001.
Viola, G., G. Venvik Ganerød, and C.-H. Wahlgren (2009), Unraveling 1.5 ga of brittle deformation history in the laxemar-simpevarp area, southeast sweden: A contribution to the swedish site investigation study for the disposal of highly radioactive nuclear waste, Tectonics, 28(5), doi: 10.1029/2009TC002461.
Viola, G., I. Henderson, B. Bingen, and B. Hendriks (2011), The grenvillian–sveconorwegian orogeny in fennoscandia: back-thrusting and extensional shearing along the “mylonite zone”, Precambrian Research, 189(3-4), 368–388, doi: 10.1016/j.precamres.2011.06.005.
Viola, G., A. Kounov, M. Andreoli, and J. Mattila (2012), Brittle tectonic evolution along the western margin of south africa: more than 500 myr of continued reactivation, Tectonophysics, 514, 93–114, doi: 10.1016/j.tecto.2011.10.009.
Viola, G., H. Zwingmann, J. Mattila, and A. Käpyaho (2013), K-ar illite age constraints on the proterozoic formation and reactivation history of a brittle fault in fennoscandia, Terra Nova, 25(3), 236–244, doi: 10.1111/ter.12031.
Wallace, R. E. (1951), Geometry of shearing stress and relation to faulting, The Journal of geology, 59(2), 118–130, doi: 10.1086/625831.
Yamaji, A. (2016), Genetic algorithm for fitting a mixed bingham distribution to 3d orientations: a tool for the statistical and paleostress analyses of fracture orientations, Island Arc, 25(1), 72–83, doi: 10.1111/iar.12135.
Yamaji, A., K. Sato, and S. Tonai (2010), Stochastic modeling for the stress inversion of vein orientations: Paleostress analysis of pliocene epithermal veins in southwestern kyushu, japan, Journal of Structural Geology, 32(8), 1137–1146, doi: 10.1016/j.jsg.2010.07.001.
Zhao, G., P. A. Cawood, S. A. Wilde, and M. Sun (2002), Review of global 2.1–1.8 ga orogens: implications for a pre-rodinia supercontinent, Earth-Science Reviews, 59(1), 125–162, doi: 10.1016/S0012-8252(02)00073-9.
Žalohar, J., and M. Vrabec (2007), Paleostress analysis of heterogeneous fault-slip data: The gauss method, Journal of Structural Geology, 29(11), 1798–1810, doi: 10.1016/j.jsg.2007.06