Late Pleistocene activity and slip rates at the front of the Malargüe Fold-and-Thrust Belt (Southern Central Andes, Argentina)
Main Article Content
Abstract
Hazardous faults in the retro-arc foreland of the southern Central Andes have predominantly been linked to the deformation of the Pampean flat-slab segment (28°S-33°S). There is a perceived decrease in Quaternary thrusting south of 33°S where the underlying subducted slab steepens. This is attributed to the limited documentation of the surface expression of thrusting in this region. Nevertheless, the Malargüe Fold-and-Thrust Belt (FTB; 34-36,30°S) in Argentina is subject to an intense seismic activity with historical earthquakes of magnitudes over 6. We report here evidence of Quaternary tectonic deformation to quantify the current slip rates along the Malargüe FTB thrust front. We have constructed a detailed morpho-structural map of the Sosneado thin-skinned thrust from extensive surface mapping and limited 2D seismic interpretation. The longitudinal profile of the alluvial deposits of the Atuel River reveals two 7 km-wide folds and associated growth strata at the front of the Malargüe FTB. Field investigations have led to the identification of several reverse faults dissecting Quaternary alluvial deposits. New Terrestrial Cosmogenic Nuclides dating of two alluvial terraces (71-75 ± 7 ka) assign their age of abandonment and, consequently, the deformation to the late Pleistocene. We use a simple shear analytical solution to estimate and quantify the cumulated deformation associated with the frontal thrust since the abandonment the alluvial terraces. Results indicate slip rates of about 1.0-1.3 ± 0.2 mm.yr-1 during the late Pleistocene. Structural restoration of the seismic cross section back to mid Miocene (9 Ma) suggests a later shortening of about 1500 m compatible with an average strain rate of only 0.16 mm.yr-1. This suggests that the frontal thrust has been actively deforming during the Quaternary. By comparing the slip rates obtained from our study of the frontal Malargüe FTB with slip rates reported from the Pampean flat-slab zone, we suggest that the Malargüe FTB should be classified as a hazardous thrust system. Our findings indicate that the initial perception of a lack of active deformation and related hazards in the Andean retro-arc foreland related to slab steepness may be skewed.
Article Details
References
Allmendinger, R. W., D. Figueroa, D. Snyder, J. Beer, C. Mpodozis, and B. L. Isacks (1990), Foreland shortening and crustal balancing in the Andes at 30°S latitude, Tectonics, 9, 789–809, doi: 10.1029/TC009i004p00789.
Alvarado, P., and S. Beck (2006), Source characterization of the San Juan (Argentina) crustal earthquakes of 15 January 1944 (Mw 7.0) and 11 June 1952 (Mw 6.8), Earth and planetary science letters, 243(3), 615–631, doi: 10.1016/j.epsl.2006.01.015.
Alvarado, P., S. Beck, G. Zandt, M. Araujo, and E. Triep (2005), Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling, Geophysical Journal International, 163(2), 580–598, doi: 10.1111/j.1365-246X.2005.02759.x.
Anderson, M., P. Alvarado, G. Zandt, and S. Beck (2007), Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina, Geophysical Journal International, 171(1), 419–434, doi: 10.1111/j.1365-246X.2007.03483.x.
Anderson, R. S., J. L. Repka, and G. S. Dick (1996), Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al, Geology, 24(1), 47–51, doi: 10.1130/0091-7613(1996)024<0047:ETOIID>2.3.CO;2.
Astini, R. A. (1998), Stratigraphical evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina, Geological Society, London, Special Publications, 142(1), 11–33, doi: 10.1144/GSL.SP.1998.142.01.02.
Baker, S. E., J. C. Gosse, E. V. McDonald, E. B. Evenson, and O. Martínez (2009), Quaternary history of the piedmont reach of Río Diamante, Argentina, Journal of South American Earth Sciences, 28(1), 54–73, doi: 10.1016/j.jsames.2009.01.001.
Balco, G., J. O. Stone, N. A. Lifton, and T. J. Dunai (2008), A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quaternary geochronology, 3(3), 174–195, doi: 10.1016/j.quageo.2007.12.001.
Bande, A., A. Boll, F. Fuentes, B. K. Horton, and D. F. Stockli (2020), Thermochronological Constraints on the Exhumation of the Malargüe Fold-Thrust Belt, Southern Central Andes, in Opening and Closure of the Neuquén Basin in the Southern Andes, vol. Not available, edited by D. Kietzmann and A. Folguera, pp.371–396, Springer International Publishing, Cham, doi: 10.1007/978-3-030-29680-3_15.
Bechis, F., L. Giambiagi, V. García, S. Lanés, E. Cristallini, and M. Tunik (2010), Kinematic analysis of a transtensional fault system: The Atuel depocenter of the Neuquén basin, southern Central Andes, Argentina, Journal of Structural Geology, 32(7), 886–899, doi: 10.1016/j.jsg.2010.03.009.
Bernard, S., J. Avouac, S. Dominguez, and M. Simoes (2007), Kinematics of fault-related folding derived from a sandbox experiment, Journal of Geophysical Research, [Solid Earth], 112, Not available, doi: 10.1029/2005JB004149.
Bierman, P. R. (1994), Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective, Journal of Geophysical Research, [Solid Earth], 99, 13,885–13,896, doi: 10.1029/94JB00459.
Bierman, P. R., A. R. Gillespie, and M. W. Caffee (1995), Cosmogenic Ages for Earthquake Recurrence Intervals and Debris Flow Fan Deposition, Owens Valley, California, Science, 270(5235), 447–450, doi: 10.1126/science.270.5235.447.
Branellec, M., B. Nivière, J.-P. Callot, V. Regard, and J.-C. Ringenbach (2016a), Evidence of active shortening along the eastern border of the San Rafael basement block: characterization of the seismic source of the Villa Atuel earthquake (1929), Mendoza province, Argentina, Geological magazine, 153(5-6), 911–925, doi: 10.1017/S0016756816000194.
Branellec, M., B. Nivière, J.-P. Callot, and J.-C. Ringenbach (2016b), Mechanisms of basin contraction and reactivation in the basement-involved Malargüe fold-and-thrust belt, Central Andes (34–36°S), Geological magazine, 153(5-6), 926–944, doi: 10.1017/S0016756816000315.
Brook, E. J., E. T. Brown, M. D. Kurz, R. P. Ackert, G. M. Raisbeck, and F. Yiou (1995), Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al, Geology, 23(12), 1063–1066, doi: 10.1130/0091-7613(1995)023<1063:COAEAU>2.3.CO;2.
Brooks, B. A., M. Bevis, R. Smalley, Jr, E. Kendrick, R. Manceda, E. Lauría, R. Maturana, and M. Araujo (2003), Crustal motion in the Southern Andes (26°–36°S): Do the Andes behave like a microplate?, Geochemistry, Geophysics, Geosystems, 4(10), Not available, doi: 10.1029/2003gc000505.
Brown, E. T., J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, and E. J. Brook (1991), Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al, Geochimica et cosmochimica acta, 55(8), 2269–2283, doi: 10.1016/0016-7037(91)90103-C.
Brown, E. T., R. F. Stallard, M. C. Larsen, G. M. Raisbeck, and F. Yiou (1995), Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico, Earth and planetary science letters, 129(1), 193–202, doi: 10.1016/0012-821X(94)00249-X.
Cande, S. C., and R. B. Leslie (1986), Late Cenozoic tectonics of the southern Chile Trench, Journal of geophysical research, 91(B1), 471–496, doi: 10.1029/jb091ib01p00471.
Cerling, T. E., and H. Craig (1994), GEOMORPHOLOGY AND IN-SITU COSMOGENIC ISOTOPES, Annual review of earth and planetary sciences, 22(Volume 22, 1994), 273–317, doi: 10.1146/annurev.ea.22.050194.001421.
Charrier, R., L. Pinto, and M. P. Rodríguez (2007), Tectonostratigraphic evolution of the Andean Orogen in Chile, in The Geology of Chile, Geological Society of London, doi: 10.1144/GOCH.3.
Chernicoff, C. J., and E. O. Zappettini (2004), Geophysical Evidence for Terrane Boundaries in South-Central Argentina, Gondwana Research, 7(4), 1105–1116, doi: 10.1016/S1342-937X(05)71087-X.
Cobbold, P. R., and E. A. Rossello (2003), Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina, Marine and Petroleum Geology, 20(5), 429–443, doi: 10.1016/S0264-8172(03)00077-1.
Colavitto, B., L. Sagripanti, L. Fennell, A. Folguera, and C. Costa (2019), Evidence of Quaternary tectonics along Río Grande valley, southern Malargüe fold and thrust belt, Mendoza, Argentina, Geomorphology, 346, 106,812, doi: 10.1016/j.geomorph.2019.06.025.
Cominguez, A. H., and V. A. Ramos (1991), LA ESTRUCTURA PROFUNDA ENTRE PRECORDILLERA y SIERRAS PAMPEANAS DE LA ARGENTINA: EVIDENCIAS DE LA SISMICA DE REFLEXION PROFUNDA, Andean Geology, 18, 3–14, doi: 10.5027/ANDGEOV18N1-A01.
Costa, C., H. Cisneros, J. Salvarredi, and A. Gallucci (2006), La neotectónica del margen oriental del bloque de San Rafael: Nuevas consideraciones, Asociación Geológica Argentina, Serie D: Publicación Especial, 6, 33–40.
Costa, C., A. Alvarado, F. Audemard, L. Audin, C. Benavente, F. H. Bezerra, J. Cembrano, G. González, M. López, E. Minaya, I. Santibañez, J. Garcia, M. Arcila, M. Pagani, I. Pérez, F. Delgado, M. Paolini, and H. Garro (2020), Hazardous faults of South America; compilation and overview, Journal of South American Earth Sciences, 104, 102,837, doi: 10.1016/j.jsames.2020.102837.
Costa, C. H., and C. V. Finzi (1996), Late Holocene faulting in the southeast Sierras Pampeanas of Argentina, Geology, 24(12), 1127–1130, doi: 10.1130/0091-7613(1996)024<1127:LHFITS>2.3.CO;2.
Costa, C. H., L. M. Schoenbohm, B. A. Brooks, C. E. Gardini, and A. D. Richard (2019), Assessing Quaternary shortening rates at an Andean frontal thrust (32°30′S), Argentina, Tectonics, 38(8), 3034–3051, doi: 10.1029/2019tc005564.
Costa, C. H., L. A. Owen, W. J. Johnson, and E. Kirby (2021), Quaternary activity and seismogenic potential of the Sierra Chica Fault System, Pampean Ranges of Argentina, Journal of South American Earth Sciences, 110, 103,328, doi: 10.1016/j.jsames.2021.103328.
del Papa, C., F. Hongn, J. Powell, P. Payrola, M. Do Campo, M. R. Strecker, I. Petrinovic, A. K. Schmitt, and R. Pereyra (2013), Middle Eocene-Oligocene broken-foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies, Basin Research, 25(5), 574–593, doi: 10.1111/bre.12018.
Desilets, D., and M. Zreda (2003), Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating, Earth and planetary science letters, 206(1), 21–42, doi: 10.1016/S0012-821X(02)01088-9.
Desilets, D., M. Zreda, and T. Prabu (2006), Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude, Earth and planetary science letters, 246(3), 265–276, doi: 10.1016/j.epsl.2006.03.051.
Dunai, T. J. (2001), Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides, Earth and planetary science letters, 193(1), 197–212, doi: 10.1016/S0012-821X(01)00503-9.
Dávila, F. M., and R. A. Astini (2003), Early Middle Miocene broken foreland development in the southern Central Andes: evidence for extension prior to regional shortening, Basin Research, 15(3), 379–396, doi: 10.1046/j.1365-2117.2003.00206.x.
Dávila, F. M., M. E. Giménez, J. C. Nóbile, and M. P. Martínez (2012), The evolution of the high-elevated depocenters of the northern Sierras Pampeanas (ca. 28˚ SL), Argentine broken foreland, South-Central Andes: the Pipanaco Basin, Basin Research, 24(6), 615–636, doi: 10.1111/j.1365-2117.2011.00539.x.
Folguera, A., J. A. Naranjo, Y. Orihashi, H. Sumino, K. Nagao,E. Polanco, and V. A. Ramos (2009), Retroarc volcanism in the northern San Rafael Block (34°–35°30′S), southern Central Andes: Occurrence, age, and tectonic setting, Journal of Volcanology and Geothermal Research, 186(3), 169–185, doi: 10.1016/j.jvolgeores.2009.06.012.
Folguera, A., G. Gianni, L. Sagripanti, E. Rojas Vera, I. Novara, B. Colavitto, O. Alvarez, D. Orts, J. Tobal, M. Giménez, A. Introcaso, F. Ruiz, P. Martínez, and V. A. Ramos (2015), A review about the mechanisms associated with active deformation, regional uplift and subsidence in southern South America, Journal of South American Earth Sciences, 64, 511–529, doi: 10.1016/j.jsames.2015.07.007.
Franzese, J. R., and L. A. Spalletti (2001), Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting, Journal of South American Earth Sciences, 14(3), 257–270, doi: 10.1016/S0895-9811(01)00029-3.
Fuentes, F., B. K. Horton, D. Starck, and A. Boll (2016), Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold–thrust belt, Neuquén basin, Argentina, Geological magazine, 153(5-6), 1066–1084, doi: 10.1017/S0016756816000583.
Galland, O., E. Hallot, P. R. Cobbold, G. Ruffet, and J. de Bremond d’Ars (2007), Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén province, Argentina), Tectonics, 26, Not available, doi: 10.1029/2006TC002011.
Galland, O., H. J. Villar, J. Mescua, D. A. Jerram, G. Messager, A. Medialdea, I. Midtkandal, J. O. Palma, S. Planke, L. E. Augland, and A. Zanella (2024), Structural control of igneous intrusions on fluid migration in sedimentary basins: the case study of large bitumen seeps at Cerro Alquitrán and Cerro La Paloma, northern Neuquén Basin, Argentina, Geological Society, London, Special Publications, 547(1), SP547–2023–115, doi: 10.1144/SP547-2023-115.
García Morabito, E., A. Beltrán-Triviño, C. M. Terrizzano, F. Bechis, J. Likerman, A. Von Quadt, and V. A. Ramos (2021), The influence of climate on the dynamics of mountain building within the northern Patagonian Andes, Tectonics, 40(2), Not available, doi: 10.1029/2020tc006374.
Giambiagi, L., F. Bechis, V. García, and A. H. Clark (2008), Temporal and spatial relationships of thick- and thin-skinned deformation: A case study from the Malargüe fold-and-thrust belt, southern Central Andes, Tectonophysics, 459(1), 123–139, doi: 10.1016/j.tecto.2007.11.069.
Giambiagi, L. B., M. A. Tunik, and M. Ghiglione (2001), Cenozoic tectonic evolution of the Alto Tunuyán foreland basin above the transition zone between the flat and normal subduction segment (33°30′–34°S), western Argentina, Journal of South American Earth Sciences, 14(7), 707–724, doi: 10.1016/S0895-9811(01)00059-1.
Gimenez, M. E., M. P. Martı́nez, and A. Introcaso (2000), A crustal model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil, Argentina, Journal of South American Earth Sciences, 13(3), 275–286, doi: 10.1016/S0895-9811(00)00012-2.
González-Díaz, E. (1964), Rasgos geológicos y evolución geomorfológica de la Hoja 27 d (San Rafael) y zona occidental vecina (Provincia de Mendoza), Revista de la Asociación Geológica Argentina, 19(3), 151–188.
Gosse, J. C. (1994), Alpine glacial history reconstruction: 1. Application of the cosmogenic beryllium-10 exposure age method to determine the glacial chronology of the Wind River Mountains, Wyoming, United States of America. 2. Relative dating of Quaternary deposits in the Rio Atuel Valley, Mendoza, Argentina, Ph.D. thesis, Lehigh University, Bethlehem, PA, USA.
Granger, D. E., and P. F. Muzikar (2001), Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations, Earth and planetary science letters, 188(1), 269–281, doi: 10.1016/S0012-821X(01)00309-0.
Gregori, S. D., and R. Christiansen (2018), Seismic hazard analysis for central-western Argentina, Geodesy and Geodynamics, 9(1), 25–33, doi: 10.1016/j.geog.2017.07.006.
Groeber, P. (1929), Líneas fundamentales de la geología del Neuquén, sur de Mendoza y regiones adyacentes, Tech. rep., Ministerio de Agricultura. Dirección General de Minas, Geología e Hidrología, Buenos Aires.
Guzmán, C., E. Cristallini, and G. Bottesi (2007), Contemporary stress orientations in the Andean retroarc between 34°S and 39°S from borehole breakout analysis, Tectonics, 26, Not available, doi: 10.1029/2006tc001958.
Hain, M. P., M. R. Strecker, B. Bookhagen, R. N. Alonso, H. Pingel, and A. K. Schmitt (2011), Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25°S), Tectonics, 30, Not available, doi: 10.1029/2010TC002703.
Hallet, B., and J. Putkonen (1994), Surface dating of dynamic landforms: young boulders on aging moraines, Science, 265(5174), 937–940, doi: 10.1126/science.265.5174.937.
Hilley, G. E., and M. R. Strecker (2005), Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina, Geological Society of America bulletin, 117(7-8), 887–901, doi: 10.1130/B25602.1.
Huyghe, D., C. Bonnel, B. Nivière, B. Fasentieux, and Y. Hervouët (2015), Neogene tectonostratigraphic history of the southern Neuquén basin (39°-40°30′S, Argentina): implications for foreland basin evolution, Basin Research, 27(5), 613–635, doi: 10.1111/bre.12091.
Jordan, T. E., B. L. Isacks, R. W. Allmendinger, J. A. Brewer, V. A. Ramos, and C. J. Ando (1983), Andean tectonics related to geometry of subducted Nazca plate, Geological Society of America bulletin, 94(3), 341–361, doi: 10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2.
Kadinsky-Cade, K., R. Reilinger, and B. Isacks (1985), Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence, Journal of Geophysical Research, [Solid Earth], 90(B14), 12,691–12,700, doi: 10.1029/jb090ib14p12691.
Kahle, A. B., F. D. Palluconi, S. J. Hook, V. J. Realmuto, and G. Bothwell (1991), The advanced spaceborne thermal emission and reflectance radiometer (Aster), International journal of imaging systems and technology, 3(2), 144–156, doi: 10.1002/ima.1850030210.
Kay, S. M., V. A. Ramos, C. Mpodozis, and P. Sruoga (1989), Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America?, Geology, 17(4), 324–328, doi: 10.1130/0091-7613(1989)017<0324:LPTJSM>2.3.CO;2.
Kay, S. M., W. Matthew Burns, P. Copeland, and O. Mancilla (2006), Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin, GeoScienceWorld, doi: 10.1130/2006.2407(02).
Kozlowski, E., R. Manceda, and V. Ramos (1993), Estructura, in Geología y recursos naturales de Mendoza, vol. 1, pp. 253–256, Asociación Geológica Argentina, Buenos Aires.
Kraemer, P., J. Silvestro, F. Achilli, and W. Brinkworth (2011), Kinematics of a Hybrid Thick-thin-skinned Fold and Thrust Belt Recorded in Neogene Syntectonic Wedge-top Basins, Southern Central Andes Between 35° and 36°S, Malargüe, Argentina, in Thrust Fault-Related Folding, vol. Memoir 94, edited by McClay and J. Suppe, pp. 245–270, American Association of Petroleum Geologists, doi: 10.1306/13251340M943099.
Lal, D. (1991), Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth and planetary science letters, 104(2), 424–439, doi: 10.1016/0012-821X(91)90220-C.
Lanes, S. (2005), Late Triassic to Early Jurassic sedimentation in northern Neuquén Basin, Argentina: Tectosedimentary Evolution of the First Transgression, Geologica Acta: an international earth science journal, 3(2), 81–106.
Langer, C. J., and S. Hartzell (1996), Rupture distribution of the 1977 western Argentina earthquake, Physics of the Earth and Planetary Interiors, 94(1), 121–132, doi: 10.1016/0031-9201(95)03080-8.
Lavé, J., and J. P. Avouac (2000), Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal, Journal of geophysical research, 105(B3), 5735–5770, doi: 10.1029/1999jb900292.
Leanza, H. A., and C. A. Hugo (2001), Hoja Geológica 3969-I Zapala.
Leland, J., M. R. Reid, D. W. Burbank, R. Finkel, and M. Caffee (1998), Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths, Earth and planetary science letters, 154(1), 93–107, doi: 10.1016/S0012-821X(97)00171-4.
Lifton, N. A., J. W. Bieber, J. M. Clem, M. L. Duldig, P. Evenson, J. E. Humble, and R. Pyle (2005), Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications, Earth and planetary science letters, 239(1), 140–161, doi: 10.1016/j.epsl.2005.07.001.
Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1), Not available, doi: 10.1029/2004pa001071.
Lopasso, A. M., F. Tapia, R. Feal, R. Ondrak, J. Sláma, J. Hlebszevitsch, L. Giambiagi, and M. C. Ghiglione (2024), Pleistocene deformation of the Malargüe fold–thrust belt from structural modelling and geochronology of syntectonic sedimentation, Journal of the Geological Society, 181, Not available, doi: 10.1144/jgs2023-065.
López Ordines, M. A., L. Ciancio, E. A. Rojas Vera, and R. G. López (2022), Structural development in the frontal Malargüe fold and thrust belt, Neuquén Basin, Argentina, in Andean Structural Styles, vol. Not available, pp. 423–431, Elsevier, doi: 10.1016/b978-0-323-85175-6.00033-x.
Manceda, R., and D. Figueroa (1995), Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina, in Petroleum Basins of South America, vol. Memoir 62, edited by R. S. S. . H. J. W. A. J. Tankard, pp. 369–382, AAPG Special Volumes.
Markham, B. L., W. C. Boncyk, D. L. Helder, and J. L. Barker (1997), Landsat-7 Enhanced Thematic Mapper Plus Radiometric Calibration, Canadian Journal of Remote Sensing, 23(4), 318–332, doi: 10.1080/07038992.1997.10855218.
Martinod, J., L. Husson, P. Roperch, B. Guillaume, and N. Espurt (2010), Horizontal subduction zones, convergence velocity and the building of the Andes, Earth and planetary science letters, 299(3), 299–309, doi: 10.1016/j.epsl.2010.09.010.
Mescua, J. F., L. B. Giambiagi, A. Tassara, M. Gimenez, and V. A. Ramos (2014), Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold-and-thrust belt at 35°S, Andes of Argentina, Geosphere, 10(3), 585–609, doi: 10.1130/GES00939.1.
Mescua, J. F., M. Barrionuevo, L. Giambiagi, J. Suriano, S. Spagnotto, E. Stahlschmidt, H. de la Cal, J. L. Soto, and M. Mazzitelli (2019), Stress field and active faults in the orogenic front of the Andes in the Malargüe fold-and-thrust belt (35°–36°S), Tectonophysics, 766, 179–193, doi: 10.1016/j.tecto.2019.06.003.
Messager, G., B. Nivière, J. Martinod, P. Lacan, and J.-P. Xavier (2010), Geomorphic evidence for Plio-Quaternary compression in the Andean foothills of the southern Neuquén Basin, Argentina, Tectonics, 29(4), doi: 10.1029/2009TC002609.
Messager, G., B. Nivière, P. Lacan, Y. Hervouët, and J.-P. Xavier (2014), Plio-Quaternary thin-skinned tectonics along the crustal front flexure of the southern Central Andes: a record of the regional stress regime or of local tectonic-driven gravitational processes?, International Journal of Earth Sciences, 103(3), 929–951, doi: 10.1007/s00531-013-0983-4.
Messager, G., D. Huyghe, C. Bonnel, B. Nivière, and B. Fasentieux (2023), The Neogene to Quaternary evolution of the Neuquén Andes broken foreland forced by tectonic, climatic and surface processes (southern Central Andes), Journal of South American Earth Sciences, 131, 104,620, doi: 10.1016/j.jsames.2023.104620.
Nivière, B., G. Messager, S. Carretier, and P. Lacan (2013), Geomorphic expression of the southern Central Andes forebulge (37°S, Argentina), Terra nova, 25(5), 361–367, doi: 10.1111/ter.12044.
Nullo, F., G. Stephens, A. Combina, L. Dimieri, P. Baldauf, and P. Bouza (2004), Descripción geológica de la Hoja Malargüe Provincia de Mendoza, Tech. rep., SEGEMAR.
Olivar, J., S. Nacif, M. Giménez, B. Heit, L. Fennell, and Folguera (2023), Structure and seismogenic activity of the broken foreland to the south of the Chilean-Pampean flat subduction zone: The San Rafael Block, Journal of South American Earth Sciences, 124, 104,260, doi: 10.1016/j.jsames.2023.104260.
Oro, A., P. A. Blanc, B. Colavitto, C. Rivas, L. M. Rothis, H. N. Vargas, and L. P. Perucca (2023), Surface Deformation and Secondary Effects of the January 18th, 2021 (Mw 6.4) San Juan (Argentina) Earthquake from Remote Sensing Techniques, Geologische Rundschau: Zeitschrift fur allgemeine Geologie, 112(8), 2267–2291, doi: 10.1007/s00531-023-02354-x.
Pardo, M., D. Comte, and T. Monfret (2002), Seismotectonic and stress distribution in the central Chile subduction zone, Journal of South American Earth Sciences, 15(1), 11–22, doi: 10.1016/S0895-9811(02)00003-2.
Pardo-Casas, F., and P. Molnar (1987), Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time, Tectonics, 6(3), 233–248, doi: 10.1029/TC006i003p00233.
Pepin, E., S. Carretier, G. Hérail, V. Regard, R. Charrier, M. Farías, V. García, and L. Giambiagi (2013), Pleistocene landscape entrenchment: a geomorphological mountain to foreland field case, the Las Tunas system, Argentina, Basin Research, 25(6), 613–637, doi: 10.1111/bre.12019.
Polanski, J. (1962), Estratigrafía, neotectónica y geomorfología del Pleistoceno pedemontano entre los ríos Diamente y Mendoza, provincia de mendoza, Revista de la Asociación Geológica Argentina, 17(3-4).
Portenga, E. W., and P. R. Bierman (2011), Understanding Earth’s eroding surface with 10Be, GSA today: a publication of the Geological Society of America, 21, 4–10, doi: 10.1130/G111A.1.
Ramos, V. A. (1981), Descripción geológica de la Hoja 33c, Los Chihuidos Norte, Provincia del Neuquén, Tech. rep., Servicio Geológico Nacional, Buenos Aires.
Ramos, V. A. (1988), The tectonics of the Central Andes; 30° to 33° S latitude, in Processes in Continental Lithospheric Deformation, vol. 218, edited by S. P. Clark, pp. 31–54, Geological Society of America, doi: 10.1130/SPE218-p31.
Ramos, V. A. (1994), Terranes of Southern Gondwanaland and Their Control in the Andean Structure (30°–33°S Latitude), in Tectonics of the Southern Central Andes: Structure and Evolution of an Active Continental Margin, vol. Not available, edited by K.-J. Reutter, E. Scheuber, and P. J. Wigger, pp. 249–261, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-642-77353-2_18.
Ramos, V. A., and S. M. Kay (2006), Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39°S latitude), in Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuque´n Basin (35°-39°S lat), vol. Special paper 407, edited by Kay, p. 342, Geological Society of America, doi: 10.1130/2006.2407(01).
Ramos, V. A., M. Cegarra, and E. Cristallini (1996), Cenozoic tectonics of the High Andes of west-central Argentina (30–36°S latitude), Tectonophysics, 259(1), 185–200, doi: 10.1016/0040-1951(95)00064-X.
Ramos, V. A., M. Escayola, D. I. Mutti, and G. I. Vujovich (2000), Proterozoic-early Paleozoic ophiolites of the Andean basement of southern South America, in Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, vol. Special Paper 349, edited by Dilek, pp. 331–349, Geological Society of America, doi: 10.1130/0-8137-2349-3.331.
Ramos, V. A., E. O. Cristallini, and D. J. Pérez (2002), The Pampean flat-slab of the Central Andes, Journal of South American Earth Sciences, 15(1), 59–78, doi: 10.1016/S0895-9811(02)00006-8.
Regard, V., O. Bellier, J.-C. Thomas, D. Bourlès, S. Bonnet, M. R. Abbassi, R. Braucher, J. Mercier, E. Shabanian, S. Soleymani, and K. Feghhi (2005), Cumulative right-lateral fault slip rate across the Zagros—Makran transfer zone: role of the Minab—Zendan fault system in accommodating Arabia—Eurasia convergence in southeast Iran, Geophysical Journal International, 162(1), 177–203, doi: 10.1111/j.1365-246X.2005.02558.x.
Regnier, M., J. L. Chatelain, R. Smalley, Jr, J.-M. Chiu, L. Isacks, and M. Araujo (1992), Seismotectonics of Sierra Pie de Palo, a basement block uplift in the Andean foreland of Argentina, Bulletin of the Seismological Society of America, 82(6), 2549–2571, doi: 10.1785/BSSA0820062549.
Ritz, J. F., E. T. Brown, D. L. Bourlès, H. Philip, Schlupp, G. M. Raisbeck, F. Yiou, and Enkhtuvshin (1995), Slip rates along active faults estimated with cosmic-ray–exposure dates: Application to the Bogd fault, Gobi-Altaï, Mongolia, Geology, 23(11), 1019–1022, doi: 10.1130/0091-7613(1995)023<1019:SRAAFE>2.3.CO;2.
Rockwell, T. K., D. E. Ragona, A. J. Meigs, L. A. Owen, H. Costa, and E. A. Ahumada (2014), Inferring a Thrust-Related Earthquake History from Secondary Faulting: A Long Rupture Record of La Laja Fault, San Juan, Argentina, Bulletin of the Seismological Society of America, 104(1), 269–284, doi: 10.1785/0120110080.
Rockwell, T. K., C. H. Costa, A. J. Meigs, D. Ragona, L. A. Owen, M. K. Murari, E. Masana, and A. D. Richard (2022), Paleoseismology of the Marquesado-La Rinconada thrust system, Eastern Precordillera of Argentina, Frontiers of Earth Science in China, 10, 1032,357, doi: 10.3389/feart.2022.1032357.
Rojas Vera, E. A., J. Mescua, A. Folguera, T. P. Becker, L. Sagripanti, L. Fennell, D. Orts, and V. A. Ramos (2015), Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating, Journal of South American Earth Sciences, 64, 418–433, doi: 10.1016/j.jsames.2015.10.001.
Rothis, L. M., L. P. Perucca, P. Santi Malnis, J. M. Alcacer, F. M. Haro, and H. N. Vargas (2019), Neotectonic, morphotectonic and paleoseismologic analysis of the Las Chacras Fault System, Sierras Pampeanas Occidentales, San Juan, Argentina, Journal of South American Earth Sciences, 91, 144–153, doi: 10.1016/j.jsames.2019.02.001.
Schmidt, S., R. Hetzel, F. Mingorance, and V. A. Ramos (2011), Coseismic displacements and Holocene slip rates for two active thrust faults at the mountain front of the Andean Precordillera (∼33°S), Tectonics, 30(5), Not available, doi: 10.1029/2011TC002932.
Siame, L. L., R. Braucher, and D. L. Bourles (2000), Les nucleides cosmogeniques produits in-situ; de nouveaux outils en geomorphologie quantitative, Bulletin de la Société Géologique de France, 171(4), 383–396, doi: 10.2113/171.4.383.
Siame, L. L., O. Bellier, M. Sébrier, D. L. Bourlès, P. Leturmy, M. Perez, and M. Araujo (2002), Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina), Geophysical Journal International, 150(1), 241–260, doi: 10.1046/j.1365-246X.2002.01701.x.
Siame, L. L., M. Sébrier, O. Bellier, D. Bourlès, C. Costa, E. A. Ahumada, C. E. Gardini, and H. Cisneros (2015), Active basement uplift of Sierra Pie de Palo (Northwestern Argentina): Rates and inception from10Be cosmogenic nuclide concentrations, Tectonics, 34(6), 1129–1153, doi: 10.1002/2014TC003771.
Silvestro, J., P. Kraemer, F. Achilli, and W. Brinkworth (2005), Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35°- 36° S, Malargüe, Revista de la Asociación Geológica argentina, 60(4), 627–643.
Simoes, M., J. P. Avouac, and Y. Chen (2007), Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan, Journal of Geophysical Research, [Solid Earth], 112, B03S10, doi: 10.1029/2005JB004200.
Snyder, D. B., V. A. Ramos, and R. W. Allmendinger (1990), Thick-skinned deformation observed on deep seismic reflection profiles in western Argentina, Tectonics, 9(4), 773–788, doi: 10.1029/TC009i004p00773.
Soler, P., and M. G. Bonhomme (1990), Relation of magmatic activity to plate dynamics in central Peru from Late Cretaceous to present, in Plutonism from Antarctica to Alaska, vol. Not available, pp. 173–192, Geological Society of America, doi: 10.1130/SPE241-p173.
Somoza, R. (1998), Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region, Journal of South American Earth Sciences, 11(3), 211–215, doi: 10.1016/s0895-9811(98)00012-1.
Soria, M. (1984), Vertebrados fósiles y edad de la Formación Aisol, provincia de Mendoza, Revista de la Asociación Geológica Argentina, 38(3-4), 299–306.
Sruoga, P., M. P. Etcheverría, A. Folguera, D. Repol, J. C. M. Zanettini, and L. E. Fauqué (2005), Hoja Geológica 3569-I Volcán Maipo.
Steinmann, G. (1929), Geologie von Peru, Ph.D. thesis, Carl Winters Univ. Buchhandlung, Heidelberg, Germany.
Stone, J. O. (2000), Air pressure and cosmogenic isotope production, Journal of Geophysical Research, [Solid Earth], 105(B10), 23,753–23,759, doi: 10.1029/2000JB900181.
Strecker, M. R., G. E. Hilley, B. Bookhagen, and E. R. Sobel (2012), Structural, geomorphic, and depositional characteristics of contiguous and broken foreland basins: Examples from the Eastern flanks of the central Andes in Bolivia and NW Argentina, in Tectonics of Sedimentary Basins, vol. Not available, pp. 508–521, John Wiley & Sons, Ltd, Chichester, UK, doi: 10.1002/9781444347166.ch25.
Uliana, M. A., K. T. Biddle, and J. Cerdan (1989), Mesozoic extension and the formation of Argentine sedimentary basins, in Extensional Tectonics and Stratigraphy of the North Atlantic Margins, edited by Tankard, chap. 39, pp. 599–614, AAPG Special Volumes.
Vergani, G. D., A. J. Tankard, H. J. Belotti, and H. J. Welsink (1995), Tectonic evolution and paleogeography of the Neuquén Basin, Argentina, in Petroleum Basins of South America, vol. Memoir 62, edited by A. J. Tankard and H. J. Welsink, AAPG Special Volumes.
Volkheimer, W. (1978), Descripción Geológica de la Hoja 27b, Cerro Sosneado, Tech. rep., Servicio Geológico Nacional.
von Gosen, W. (1998), Transpressive deformation in the southwestern part of the Sierra de San Luis (Sierras Pampeanas, Argentina), Journal of South American Earth Sciences, 11(3), 233–264, doi: 10.1016/S0895-9811(98)00013-3.
Zapata, T. R., and R. W. Allmendinger (1996), Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina, Tectonics, 15(5), 1065–1083, doi: 10.1029/96TC00431.
Zöllner, W., and A. J. Amos (1973), Descripción geológica de la hoja 32b, Chos Malal, Tech. rep., Servicio Geológico Nacional Argentino, Buenos Aires.