Mid- to Late Neoproterozoic Development and Provenance of the Adelaide Superbasin
Main Article Content
Abstract
Late Tonian sequences of the Adelaide Superbasin were witness to the birth of the proto-Pacific Ocean during the breakup of Rodinia. Understanding the sedimentology and provenance of these rocks from across the basin is key to understanding their deposition over c. 70 million years, the local palaeogeography, and leads to a better understanding of the early development of the proto-Pacific Ocean. While the sedimentology of the Burra Group is well studied in most areas, provenance studies on these sequences using detrital zircon have been limited in scope and lack both spatial and temporal diversity. We begin to address this knowledge gap. Samples were taken from across the Adelaide Superbasin to understand both spatial and temporal related changes in provenance. Our findings highlight the necessity of this approach by uncovering both subtle, and abrupt significant changes in detrital zircon spectra for coeval samples from across the basin, and up-sequence in local areas. Our results highlight significant changes in provenance c. 790 Ma in the north of the basin, and c. 740 Ma in the south of the basin. This suggests a southward advancement of the rift basin, gradually opening to southerly sediment supply. We posit the existence of an unrecognised source of c. 1000–900 Ma zircon to the north or northeast of the basin to account for latest Stenian to earliest Tonian detrital zircon in the Myrtle Springs Formation. Additionally, we explore the comparison of coeval Tasmanian and Laurentian sequences, suggesting a stronger Australia-Tasmania link than Tasmania-Laurentia as time progresses.
Article Details
References
Adams, C. J., and H. J. Campbell (2023), Zealandia and Australia at Ordovician continental margins: reconciling their similar and differing detrital zircon provenances within Rodinia, New Zealand journal of geology and geophysics, 66(3), 456–477, doi: 10.1080/00288306.2023.2197238.
Adams, C. J., and W. R. H. Ramsay (2022), Archean and Paleoproterozoic zircons in Paleozoic sandstones in southern New Zealand: evidence for remnant Nuna supercontinent and Ur continent rocks within Zealandia, Australian journal of earth sciences, 69(8), 1061–1081, doi: 10.1080/08120099.2022.2091039.
Anenburg, M., and M. J. Williams (2022), Quantifying the tetrad effect, shape components, and Ce–Eu–Gd anomalies in rare earth element patterns, Mathematical geosciences, 54(1), 47–70, doi: 10.1007/s11004-021-09959-5.
Armistead, S. E., A. S. Collins, S. Buckman, and R. Atkins (2020), Age and geochemistry of the boucaut volcanics in the neoproterozoic Adelaide rift complex, south Australia, Australian journal of earth sciences, 64(4), 1–10, doi: 10.1080/08120099.2021.1840435.
Armit, R. J., P. G. Betts, B. F. Schaefer, M. J. Pankhurst, and D. Giles (2014), Provenance of the Early Mesoproterozoic Radium Creek Group in the northern Mount Painter Inlier: Correlating isotopic signatures to inform tectonic reconstructions, Precambrian research, 243, 63–87, doi: 10.1016/j.precamres.2013.12.022.
Barovich, K., and M. Hand (2008), Tectonic setting and provenance of the Paleoproterozoic Willyama Supergroup,Curnamona Province, Australia: Geochemical and Nd isotopic constraints on contrasting source terrain components, Precambrian research, 166(1-4), 318–337, doi: 10.1016/j.precamres.2007.06.024.
Belousova, E. A., A. J. Reid, W. L. Griffin, and S. Y. O’Reilly (2009), Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U–Pb and Hf isotopes in detrital zircon, Lithos, 113(3-4), 570–582, doi: 10.1016/j.lithos.2009.06.028.
Berry, R. F., D. A. Steele, and S. Meffre (2008), Proterozoic metamorphism in Tasmania: Implications for tectonic reconstructions, Precambrian research, 166(1-4), 387–396, doi: 10.1016/j.precamres.2007.05.004.
Betts, M. J., J. R. Paterson, S. M. Jacquet, A. S. Andrew, P. A. Hall, J. B. Jago, E. A. Jagodzinski, W. V. Preiss, J. L. Crowley, S. A. Birch, C. P. Mathewson, D. C. García-Bellido, T. P. Topper, C. B. Skovsted, and G. A. Brock (2018), Early Cambrian chronostratigraphy and geochronology of South Australia, Earth-science reviews, 185, 498–543, doi: 10.1016/j.earscirev.2018.06.005.
Black, L., B. Lp, and G. Bl (1978), The age of the mud tank carbonatite, strangways range, northern territory, BMR journal of Australian geology and geophysics, 3, 227–232.
Black, L. P. (2007), SHRIMP U-Pb zircon ages obtained during 2006/07 for NSW Geological Survey Projects, Tech. rep., Geological Survey of New South Wales, Australia.
Bobrovskiy, I., J. M. Hope, A. Ivantsov, B. J. Nettersheim, C. Hallmann, and J. J. Brocks (2018), Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals, Science (New York, N.Y.), 361(6408), 1246–1249, doi: 10.1126/science.aat7228.
Brennan, D. T., Z.-X. Li, K. Rankenburg, N. Evans, P. K. Link, A. R. Nordsvan, C. L. Kirkland, J. B. Mahoney,
T. Johnson, and B. J. McDonald (2021), Recalibrating Rodinian rifting in the northwestern United States, Geology, 49(6), 617–622, doi: 10.1130/g48435.1.
Brookfield, M. E. (1993), Neoproterozoic Laurentia-Australia fit, Geology, 21(8), 683–686, doi: 10.1130/0091-7613(1993)021<0683:NLAF>2.3.CO;2.
Brotodewo, A., T. W. Wise, and J. C. Lloyd (2021), LA-ICP-MS detrital zircon geochronology from the Delamerian Orogen, Tech. rep., Geological Survey of South Australia, South Australia.
Calver, C. R., J. L. Crowley, M. T. D. Wingate, D. A. D. Evans, T. D. Raub, and M. D. Schmitz (2013), Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia, Geology, 41(10), 1127–1130, doi: 10.1130/G34568.1.
Cao, X., A. Collins, S. Pisarevsky, N. Flament, S. Li, D. Hasterok, and R. Müller (2024), Earth’s tectonic and plate boundary evolution over 1.8 billion years, EarthArXiv, doi: 10.31223/x5cw96.
Cawood, P. A., G. Zhao, J. Yao, W. Wang, Y. Xu, and Y. Wang (2018), Reconstructing South China in Phanerozoic and Precambrian supercontinents, Earth-science reviews, 186, 173–194, doi: 10.1016/j.earscirev.2017.06.001.
Cawood, P. A., W. Wang, T. Zhao, Y. Xu, J. A. Mulder, S. A. Pisarevsky, L. Zhang, C. Gan, H. He, H. Liu, L. Qi, Y. Wang, J. Yao, G. Zhao, M.-F. Zhou, and J.-W. Zi (2020), Deconstructing South China and consequences for reconstructing Nuna and Rodinia, Earth-science reviews, 204(103169), 103,169, doi: 10.1016/j.earscirev.2020.103169.
Collins, A. S., S. M. Reddy, C. Buchan, and A. Mruma (2004), Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania), Earth and planetary science letters, 224(1-2), 175–192, doi: 10.1016/j.epsl.2004.04.027.
Cooper, A. F., R. Maas, J. M. Scott, and A. J. W. Barber (2011), Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: Implications for the Rodinia-Gondwana transition in southern Victoria Land, Antarctica, Geological Society of America bulletin, 123(3-4), 681–702, doi: 10.1130/B30237.1.
Cooper, P. F., and K. D. Tuckwell (1971), The upper Precambrian Adelaidean of the Broken Hill area—a new subdivision, Quarterly Notes of the Geological Survey of New South Wales, 3, 8–16.
Counts, J. W. (2017), The Adelaide Rift Complex in the Flinders Ranges: geologic history, past investigations and relevant analogues, Tech. rep., Geological Survey of South Australia, Adelaide, South Australia.
Counts, J. W., and K. J. Amos (2016), Sedimentology, depositional environments and significance of an Ediacaran salt-withdrawal minibasin, Billy Springs Formation, Flinders Ranges, South Australia, Sedimentology, 63(5), 1084–1123, doi: 10.1111/sed.12250.
Counts, J. W., F. Rarity, R. B. Ainsworth, K. J. Amos, T. Lane, S. Morón, J. Trainor, C. Valenti, and R. Nanson (2016), Sedimentological interpretation of an Ediacaran delta: Bonney Sandstone, South Australia, Australian journal of earth sciences, 63(3), 257–273, doi: 10.1080/08120099.2016.1180322.
Counts, J. W., C. R. Dalgarno, K. J. Amos, and S. T. Hasiotis (2019), Lateral facies variability along the margin of an outcropping salt-withdrawal minibasin, south Australia, Journal of sedimentary research, 89(1), 28–45, doi: 10.2110/jsr.2019.2.
Cox, G. M., V. Isakson, P. F. Hoffman, T. M. Gernon, M. D. Schmitz, S. Shahin, A. S. Collins, W. Preiss, M. L. Blades, R. N. Mitchell, and A. Nordsvan (2018), South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation, Precambrian research, 315, 257–263, doi: 10.1016/j.precamres.2018.07.007.
Dalziel, I. W. D. (1991), Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent, Geology, 19(6), 598–601, doi: 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2.
Danielson, J., and D. Gesch (2011), Global multi-resolution terrain elevation data 2010 (GMTED2010), Tech. Rep. 2011-1073, U.S. Geological Survey, doi: 10.3133/OFR20111073.
Dehler, C., G. Gehrels, S. Porter, M. Heizler, K. Karlstrom, G. Cox, L. Crossey, and M. Timmons (2017), Synthesis of the 780–740 Ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia-wide cratonic marine basins, Geological Society of America bulletin, 129(5-6), 607–624, doi: 10.1130/B31532.1.
Drexel, J. F. (2008), Review of the Burra Mine Project, 1980–2008—a progress report, Tech. rep., Geological Survey of South Australia, South Australia.
Drexel, J. F., and W. V. Preiss (1995), The geology of South Australia, Bulletin, vol. 2, The Phanerozoic, Geological Survey of South Australia, Eastwood, NSW, Australia.
Dröllner, M., M. Barham, C. L. Kirkland, and B. Ware (2021), Every zircon deserves a date: selection bias in detrital geochronology, Geological magazine, 158(6), 1135–1142, doi: 10.1017/s0016756821000145.
Eickhoff, K.-H., C. C. Von Der Borch, and A. E. Grady (1988), Proterozoic canyons of the Flinders Ranges (South Australia): submarine canyons or drowned river valleys?, Sedimentary geology, 58(2-4), 217–235, doi: 10.1016/0037-0738(88)90070-x.
Ernst, R. E., M. T. D. Wingate, K. L. Buchan, and Z. X. Li (2008), Global record of 1600–700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents, Precambrian research, 160(1-2), 159–178, doi: 10.1016/j.precamres.2007.04.019.
Eyster, A., B. P. Weiss, K. Karlstrom, and F. A. Macdonald (2020), Paleomagnetism of the Chuar Group and evaluation of the late Tonian Laurentian apparent polar wander path with implications for the makeup and breakup of Rodinia, Geological Society of America bulletin, 132(3-4), 710–738, doi: 10.1130/b32012.1.
Fabris, A. J., S. A. Constable, A. Woodhouse, S. B. Hore, and M. Fanning (2005), Age, origin, emplacement and mineral potential of the Oodla Wirra Volcanics, Nackara Arc, central Flinders Ranges, South Australia, Tech. rep., Geological Survey of South Australia, Adelaide, South Australia.
Fanning, C. M. (2007), A geochronological framework for the gawler craton, south Australia, Bulletin, Geological Survey of South Australia, Eastwood, NSW, Australia.
Fanning, C. M., K. R. Ludwig, B. G. Forbes, and W. V. Preiss (1986), Single and multiple grain U–Pb zircon analyses for the early Adelaidean Rook Tuff, Willouran Ranges, South Australia, in Geological Society of Australia Abstracts, Abstracts, vol. 15, pp. 71–72, Geological Society of Australia, Sydney, New South Wales.
Fioretti, A. M., L. P. Black, J. Foden, and D. Visonà (2005), Grenville-age magmatism at the South Tasman Rise (Australia): A new piercing point for the reconstruction of Rodinia, Geology, 33(10), 769–772, doi: 10.1130/G21671.1.
Fitzherbert, J. A., and P. M. Downes (2015), A concise geological history of the Broken Hill region, Quarterly Notes - Geological Survey of New South Wales, 143(2), 29–43.
Fitzsimons, I. C. W. (2000), Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens, Geology, 28(10), 879–882, doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2.
Flint, R. B., C. M. Fanning, and L. R. Rankin (1988), The Late Proterozoic Kilroo Formation of the Polda Basin, South Australia. Geological Survey. Quarterly Geological Notes, 106, 16–23.
Foden, J., M. A. Elburg, J. Dougherty-Page, and A. Burtt (2006), The timing and duration of the delamerian orogeny: Correlation with the Ross orogen and implications for Gondwana assembly, The journal of geology, 114(2), 189–210, doi: 10.1086/499570.
Foden, J., M. Elburg, S. Turner, C. Clark, M. L. Blades, G. Cox, A. S. Collins, K. Wolff, and C. George (2020), Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin, Gondwana research: international geoscience journal, 81, 490–521, doi: 10.1016/j.gr.2019.12.006.
Fraser, G., S. McAvaney, N. Neumann, M. Szpunar, and A. Reid (2010), Discovery of early Mesoarchean crust in the eastern Gawler Craton, South Australia, Precambrian research, 179(1-4), 1–21, doi: 10.1016/j.precamres.2010.02.008.
Fraser, G. L., and N. L. Neumann (2010), New SHRIMP U-Pb Zircon Ages from the Gawler Craton and Curnamona Province, South Australia, 2008 - 2010, Tech. rep., Geoscience Australia, Canberra.
Gain, S. E. M., Y. Gréau, H. Henry, E. Belousova, I. Dainis,
W. L. Griffin, and S. Y. O’Reilly (2019), Mud Tank zircon: Long-term evaluation of a reference material for U-Pb dating, Hf-isotope analysis and trace element analysis, Geostandards and geoanalytical research, 43(3), 339–354, doi: 10.1111/ggr.12265.
Gehling, J. G. (1982), The sedimentology and stratigraphy of the late Precambrian Pound subgroup, Central Flinders Ranges, South Australia, Master’s thesis, The University of Adelaide, Adelaide, South Australia.
Gehling, J. G. (2000), Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia, Precambrian research, 100(1-3), 65–95, doi: 10.1016/s0301-9268(99)00069-8.
Gehling, J. G., and M. L. Droser (2012), Ediacaran stratigraphy and the biota of the Adelaide Geosyncline, South Australia, Episodes, 35(1), 236–246, doi: 10.18814/epiiugs/2012/v35i1/023.
Giddings, J. A., M. W. Wallace, P. W. Haines, and K. Mornane (2010), Submarine origin for the Neoproterozoic Wonoka canyons, South Australia, Sedimentary geology, 223(1-2), 35–50, doi: 10.1016/j.sedgeo.2009.10.001.
Goodge, J. W. (2020), Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma, Gondwana research: international geoscience journal, 80, 50–122, doi: 10.1016/j.gr.2019.11.001.
Goodge, J. W., J. D. Vervoort, C. M. Fanning, D. M. Brecke, G. L. Farmer, I. S. Williams, P. M. Myrow, and D. J. DePaolo (2008), A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent, Science (New York, N.Y.), 321(5886), 235–240, doi: 10.1126/science.1159189.
Goodge, J. W., C. M. Fanning, C. M. Fisher, and J. D. Vervoort (2017), Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia, Precambrian research, 299, 151–176, doi: 10.1016/j.precamres.2017.07.026.
Gostin, V. A., P. W. Haines, R. J. Jenkins, W. Compston, and I. S. Williams (1986), Impact ejecta horizon within late precambrian shales, adelaide geosyncline, South australia, Science (New York, N.Y.), 233(4760), 198–200, doi: 10.1126/science.233.4760.198.
Gostin, V. A., R. R. Keays, and M. W. Wallace (1989), Iridium anomaly from the Acraman impact ejecta horizon: impacts can produce sedimentary iridium peaks, Nature, 340(6234), 542–544, doi: 10.1038/340542a0.
Grimes, C. B., B. E. John, P. B. Kelemen, F. K. Mazdab, J. L. Wooden, M. J. Cheadle, K. Hanghøj, and J. J. Schwartz (2007), Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance, Geology, 35(7), 643–646, doi: 10.1130/G23603A.1.
Grimes, C. B., J. L. Wooden, M. J. Cheadle, and B. E. John (2015), “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 170(5-6), 46, doi: 10.1007/s00410-015-1199-3.
Haines, P. W. (1987), Carbonate shelf and basin sedimentation, late Proterozoic Wonoka Formation, South Australia, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Hall, J. W. (2018), The thermochronological evolution of the northern Gawler Craton and northern Adelaide Rift Complex, Ph.D. thesis, University of Adelaide, Adelaide, Australia.
Halpin, J. A., T. Jensen, P. McGoldrick, S. Meffre, R. F. Berry, J. L. Everard, C. R. Calver, J. Thompson, K. Goemann, and J. M. Whittaker (2014), Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America, Precambrian research, 250, 50–67, doi: 10.1016/j.precamres.2014.05.025.
Hoffman, P. F. (1991), Did the breakout of laurentia turn gondwanaland inside-out?, Science (New York, N.Y.), 252(5011), 1409–1412, doi: 10.1126/science.252.5011.1409.
Horstwood, M. S. A., J. Košler, G. Gehrels, S. E. Jackson, N. M. McLean, C. Paton, N. J. Pearson, K. Sircombe, P. Sylvester, P. Vermeesch, J. F. Bowring, D. J. Condon, and B. Schoene (2016), Community-derived standards for LA - ICP - MS U-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting, Geostandards and geoanalytical research, 40(3), 311–332, doi: 10.1111/j.1751-908x.2016.00379.x.
Hoskin, P. W. O. (2003), The composition of zircon and igneous and metamorphic petrogenesis, Reviews in mineralogy and geochemistry, 53(1), 27–62, doi: 10.2113/0530027.
Hoskin, P. W. O., and T. R. Ireland (2000), Rare earth element chemistry of zircon and its use as a provenance indicator, Geology, 28(7), 627–630, doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2.
Howard, H. M., R. H. Smithies, C. L. Kirkland, D. E. Kelsey, A. Aitken, M. T. D. Wingate, R. Quentin de Gromard, C. V. Spaggiari, and W. D. Maier (2015), The burning heart — The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia, Gondwana research: international geoscience journal, 27(1), 64–94, doi: 10.1016/j.gr.2014.09.001
Howchin, W. (1904), The geology of the Mount Lofty Ranges: Part I, Transactions of the Royal Society of South Australia, Incorporated. Royal Society of South Australia, 28, 253–280.
Hui, B., Y. Dong, F. Zhang, S. Sun, and S. He (2021), Neoproterozoic active margin in the northwestern Yangtze Block, South China: new clues from detrital zircon U–Pb geochronology and geochemistry of sedimentary rocks from the Hengdan Group, Geological magazine, 158(5), 842–858, doi: 10.1017/s0016756820000898.
Ireland, T. R., T. Flöttmann, C. M. Fanning, G. M. Gibson, and W. V. Preiss (1998), Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen, Geology, 26(3), 243–246, doi: 10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2.
Jackson, S. E., N. J. Pearson, W. L. Griffin, and E. A. Belousova (2004), The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chemical geology, 211(1-2), 47–69, doi: 10.1016/j.chemgeo.2004.06.017.
Jacobs, J., M. Elburg, A. Läufer, I. C. Kleinhanns, F. Henjes-Kunst, S. Estrada, A. S. Ruppel, D. Damaske, P. Montero, and F. Bea (2015), Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: The missing link, 15–21°E, Precambrian research, 265, 249–272, doi: 10.1016/j.precamres.2015.05.003.
Jacobs, J., B. Opås, M. A. Elburg, A. Läufer, S. Estrada, A. K. Ksienzyk, D. Damaske, and M. Hofmann (2017), Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica, Precambrian research, 294, 1–14, doi: 10.1016/j.precamres.2017.03.012.
Jago, J. B., J. G. Gehling, M. J. Betts, G. A. Brock, C. R. Dalgarno, D. C. García-Bellido, P. G. Haslett, S. M. Jacquet, P. D. Kruse, N. R. Langsford, T. J. Mount, and J. R. Paterson (2018), The Cambrian system in the arrowie basin, Flinders ranges, south Australia, Australian journal of earth sciences, 67(7), 923–948, doi: 10.1080/08120099.2018.1525431.
Jagodzinski, E. A., and C. E. Fricke (2010), Compilation of new SHRIMP U-Pb geochronological data for the Southern Curnamona Province, South Australia, 2010, Tech. rep., Geological Survey of South Australia, Adelaide, South Australia.
Jagodzinski, E. A., and S. O. McAvaney (2017), SHRIMP U-Pb geochronology data for northern Eyre Peninsula, 2014–2016, Tech. Rep. 2016/00001, Geological Survey of South Australia, Adelaide, Australia, doi: 10.13140/RG.2.2.10517.52960.
Jagodzinski, E. A., M. Werner, S. Curtis, A. Fabris, M. Pawley, and C. Krapf (2020), SHRIMP Geochronology of the Mt Double area, Southern Gawler Ranges margin, Tech. rep., Geological Survey of South Australia, South Australia.
Jagodzinski, E. A., A. J. Reid, J. L. Crowley, C. E. Wade, and S. Curtis (2023), Precise zircon U-Pb dating of the Mesoproterozoic Gawler large igneous province, South Australia, Results in Geochemistry, 10(100020), 100,020, doi: 10.1016/j.ringeo.2022.100020.
Job, A. L. (2011), Evolution of the basal Adelaidean in the northern Flinders Ranges: deposition, provenance and deformation of the Callanna and lower Burra Groups, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Jochum, K. P., U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Günther, and J. Enzweiler (2011), Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines, Geostandards and geoanalytical research, 35(4), 397–429, doi: 10.1111/j.1751-908X.2011.00120.x.
Johansson, A., B. Bingen, H. Huhma, T. Waight, R. Vestergaard, A. Soesoo, G. Skridlaite, E. Krzeminska, L. Shumlyanskyy, M. E. Holland, C. Holm-Denoma, W. Teixeira, F. M. Faleiros, B. V. Ribeiro, J. Jacobs, C. Wang, R. J. Thomas, P. H. Macey, C. L. Kirkland, M. I. H. Hartnady, B. M. Eglington, S. J. Puetz, and K. C. Condie (2022), A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia, Precambrian research, 371(106463), 106,463, doi: 10.1016/j.precamres.2021.106463.
Karlstrom, K. (1999), Refining Rodinia: Geologic Evidence for the Australia–Western U.S. connection in the Proterozoic, GSA today: a publication of the Geological Society of America, 9(10), 1–7, doi: 10.1130/gsat-1999-10-01-science.
Karlstrom, K. E., and S. A. Bowring (1988), Early Proterozoic assembly of tectonostratigraphic terranes in southwestern north America, The journal of geology, 96(5), 561–576, doi: 10.1086/629252.
Keeman, J., S. Turner, P. W. Haines, E. Belousova, T. Ireland, P. Brouwer, J. Foden, and G. Wörner (2020), New U Pb, Hf and O isotope constraints on the provenance of sediments from the Adelaide Rift Complex – Documenting the key Neoproterozoic to early Cambrian succession, Gondwana research: international geoscience journal, 83, 248–278, doi: 10.1016/j.gr.2020.02.005.
Kendall, B. S., R. A. Creaser, and D. Selby (2006), Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation, Geology, 34(9), 729–732, doi: 10.1130/G22775.1.
Lan, Z., X.-H. Li, M. Zhu, Q. Zhang, and Q.-L. Li (2015), Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance, Precambrian research, 263, 123–141, doi: 10.1016/j.precamres.2015.03.012.
Le Heron, D. P. (2012), The Cryogenian record of glaciation and deglaciation in South Australia, Sedimentary geology, 243-244, 57–69, doi: 10.1016/j.sedgeo.2011.09.013.
Le Heron, D. P., G. Cox, A. Trundley, and A. S. Collins (2011), Two Cryogenian glacial successions compared: Aspects of the Sturt and Elatina sediment records of South Australia, Precambrian research, 186(1-4), 147–168, doi: 10.1016/j.precamres.2011.01.014.
Lechte, M. A., and M. W. Wallace (2015), Sedimentary and tectonic history of the Holowilena Ironstone, a Neoproterozoic iron formation in South Australia, Sedimentary geology, 329, 211–224, doi: 10.1016/j.sedgeo.2015.09.014.
Li, Z.-X., L. Zhang, and C. M. Powell (1995), South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia?, Geology, 23(5), 407–410, doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2.
Li, Z. X., S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky (2008), Assembly, configuration, and break-up history of Rodinia: A synthesis, Precambrian research, 160(1-2), 179–210, doi: 10.1016/j.precamres.2007.04.021.
Lindsay, C. C. (1973), The Stratigraphy and Sedimentology of the Mount Saturday Area, Northern Flinders Ranges, South Australia, Ph.D. thesis, Adelaide University, Adelaide, South Australia.
Lloyd, J. C., M. L. Blades, J. W. Counts, A. S. Collins, K. J. Amos, B. P. Wade, J. W. Hall, S. Hore, A. L. Ball, S. Shahin, and M. Drabsch (2020), Neoproterozoic geochronology and provenance of the Adelaide Superbasin, Precambrian research, 350(105849), 105,849, doi: 10.1016/j.precamres.2020.105849.
Lloyd, J. C., A. S. Collins, M. L. Blades, S. E. Gilbert, and K. J. Amos (2022), Early evolution of the Adelaide Superbasin, Geosciences, 12(4), 154, doi: 10.3390/geosciences12040154.
Lloyd, J. C., W. V. Preiss, A. S. Collins, G. M. Virgo, M. L. Blades, S. E. Gilbert, D. Subarkah, C. B. E. Krapf, and K. J. Amos (2023), Geochronology and formal stratigraphy of the Sturtian Glaciation in the Adelaide Superbasin, Geological magazine, 160(7), 1321–1344, doi: 10.1017/s0016756823000390.
Lubiniecki, D. C., R. C. King, S. P. Holford, M. A. Bunch, S. B. Hore, and S. M. Hill (2020), Cenozoic structural evolution of the Mount Lofty Ranges and Flinders Ranges, South Australia, constrained by analysis of deformation bands, Australian journal of earth sciences, 67(8), 1097–1115, doi: 10.1080/08120099.2019.1695227.
Mackay, W. G. (2011), Structure and sedimentology of the Curdimurka subgroup, northern Adelaide Fold Belt, South Australia, Ph.D. thesis, University of Tasmania, Hobart, Tasmania, doi: 10.25959/23210435.V1.
MacLennan, S. A., M. P. Eddy, A. J. Merschat, A. K. Mehra, P. W. Crockford, A. C. Maloof, C. S. Southworth, and
B. Schoene (2020), Geologic evidence for an icehouse Earth before the Sturtian global glaciation, Science advances, 6(24), eaay6647, doi: 10.1126/sciadv.aay6647.
Mancktelow, N. S. (1979), The structure and metamorphism of the southern Adelaide Fold Belt, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Matenco, L. C., and B. U. Haq (2020), Multi-scale depositional successions in tectonic settings, Earth-science reviews, 200(102991), 102,991, doi: 10.1016/j.earscirev.2019.102991.
Mawson, D. (1947), The Adelaide Series as developed along the western margin of the Flinders Ranges, Transactions of the Royal Society of South Australia, Incorporated. Royal Society of South Australia, 71, 259–280.
Mawson, D., and R. C. Sprigg (1950), Subdivision of the Adelaide System, The Australian journal of science, 13(3), 69–72.
McAvaney, S. (2012), The Cooyerdoo Granite: Paleo-and Mesoarchean basement of the Gawler Craton, MESA Journal, 90(15), 80.
McAvaney, S. O., M. Werner, M. J. Pawley, C. B. E. Krapf, and B. E. Nicolson (2016), Geology of the Six Mile Hill 1:75 000 Map Sheet, Mineral Systems Drilling Program Special Map Series, Tech. rep., Geological Survey of South Australia, Adelaide, South Australia.
Meaney, K. J. (2012), The geochronology and structural evolution of the Warren Inlier and Springfield Sequence, Mt. Lofty Ranges: Implications for Proterozoic paleogeographic reconstructions, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Meaney, K. J. (2017), Proterozoic crustal growth in the southeastern Gawler Craton: The development of the Barossa Complex, and an assessment of the detrital zircon method, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Merdith, A. S., A. S. Collins, S. E. Williams, S. Pisarevsky, J. D. Foden, D. B. Archibald, M. L. Blades, B. L. Alessio,
S. Armistead, D. Plavsa, C. Clark, and R. D. Müller (2017), A full-plate global reconstruction of the Neoproterozoic, Gondwana research: international geoscience journal, 50, 84–134, doi: 10.1016/j.gr.2017.04.001.
Merdith, A. S., S. E. Williams, S. Brune, A. S. Collins, and R. D. Müller (2019), Rift and plate boundary evolution across two supercontinent cycles, Global and planetary change, 173, 1–14, doi: 10.1016/j.gloplacha.2018.11.006.
Merdith, A. S., S. E. Williams, A. S. Collins, M. G. Tetley, J. A. Mulder, M. L. Blades, A. Young, S. E. Armistead, J. Cannon, S. Zahirovic, and R. D. Müller (2021), Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth-science reviews, 214(103477), 103,477, doi: 10.1016/j.earscirev.2020.103477.
Moores, E. M. (1991), Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis, Geology, 19(5), 425–428, doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2.
Morrissey, L. J., K. M. Barovich, M. Hand, K. E. Howard, and J. L. Payne (2019), Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna (Columbia), Geoscience frontiers, 10(1), 175–194, doi: 10.1016/j.gsf.2018.07.006.
Mount, T. J. (1976), Diapirs and diapirism in the Adelaide ‘Geosyncline’, South Australia, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Mulder, J. A., J. A. Halpin, and N. R. Daczko (2015), Mesoproterozoic Tasmania: Witness to the East Antarctica–Laurentia connection within Nuna, Geology, 43(9), 759–762, doi: 10.1130/G36850.1.
Mulder, J. A., K. E. Karlstrom, J. A. Halpin, A. S. Merdith, C. J. Spencer, R. F. Berry, and B. McDonald (2018a), Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon, Geology, 46(11), 991–994, doi: 10.1130/G45225.1.
Mulder, J. A., R. F. Berry, J. A. Halpin, S. Meffre, and J. L. Everard (2018b), Depositional age and correlation of the Oonah Formation: refining the timing of Neoproterozoic basin formation in Tasmania, Australian journal of earth sciences, 65(3), 391–407, doi: 10.1080/08120099.2018.1426629.
Mulder, J. A., J. L. Everard, G. Cumming, S. Meffre, R. S. Bottrill, A. S. Merdith, J. A. Halpin, A. W. McNeill, and P. A. Cawood (2020), Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia, Earth-science reviews, 201(103041), 103,041, doi: 10.1016/j.earscirev.2019.103041.
Murrell, B. (1977), Stratigraphy and tectonics across the Torrens hinge zone between Andamooka and Marree, South Australia [microform], Ph.D. thesis, Adelaide„ Adelaide, South Australia.
Norris, A., and L. Danyushevsky (2018), Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS, Goldschmidt: Boston, MA, USA.
O’Neill, H. S. C. (2016), The smoothness and shapes of chondrite-normalized rare earth element patterns in basalts, Journal of petrology, 57(8), 1463–1508, doi: 10.1093/petrology/egw047.
Page, R. W., B. P. J. Stevens, and G. M. Gibson (2005), Geochronology of the sequence hosting the Broken Hill Pb-Zn-Ag orebody,Australia, Economic geology and the bulletin of the Society of Economic Geologists, 100(4), 633–661, doi: 10.2113/gsecongeo.100.4.633.
Park, Y., N. L. Swanson-Hysell, H. Xian, S. Zhang, D. J. Condon, H. Fu, and F. A. Macdonald (2021), A consistently high-latitude South China from 820 to 780 ma: Implications for exclusion from Rodinia and the feasibility of large-scale true polar wander, Journal of geophysical research. Solid earth, 126(6), doi: 10.1029/2020jb021541.
Powell, C. M., W. V. Preiss, C. G. Gatehouse, B. Krapez, and Z. X. Li (1994), South Australian record of a Rodinian epicontinental basin and its mid-neoproterozoic breakup (∼700 Ma) to form the Palaeo-Pacific Ocean, Tectonophysics, 237(3-4), 113–140, doi: 10.1016/0040-1951(94)90250-x.
Preiss, W., C. Fanning, M. Szpunar, and A. Burtt (2008), Age and tectonic significance of the Mount Crawford Granite Gneiss and a related intrusive in the Oakbank Inlier, Mount Lofty Ranges, South Australia, MESA Journal, 49, 38–49.
Preiss, W. V. (1987), Adelaide Geosyncline–late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics, Bulletin, Geological Survey of South Australia, Eastwood, NSW, Australia.
Preiss, W. V. (1993), Neoproterozoic, in The geology of South Australia, Bulletin, vol. 1 The Precambrian, edited by J. F. Drexel, W. V. Preiss, and A. J. Parker, pp. 171–204, Geological Survey of South Australia, South Australia.
Preiss, W. V. (1997), Revision of lithostratigraphy and structure, and evidence of volcanism in Lower Burra Group type sections, Carey Gully-Basket Range Area, Mount Lofty Ranges, MESA Journal, 7, 37–46.
Preiss, W. V. (2000), The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction, Precambrian research, 100(1-3), 21–63, doi: 10.1016/s0301-9268(99)00068-6.
Preiss, W. V., and W. M. Cowley (1999), Genetic stratigraphy and revised lithostratigraphic classification of the Burra Group in the Adelaide Geosyncline, MESA Journal, 14, 30–40.
Preiss, W. V., I. A. Dyson, P. W. Reid, and W. M. Cowley (1998), Revision of lithostratigraphic classification of the Umberatana Group, MESA Journal, 9, 36–42.
Preiss, W. V., J. F. Drexel, and A. J. Reid (2009), Definition and age of the Kooringa Member of the Skillogalee Dolomite: host for Neoproterozoic (c. 790 Ma) porphyry-related copper mineralisation at Burra, MESA Journal, 55, 19–33.
Reid, A. J., and M. Hand (2012), Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia, Episodes, 35(1), 216–225, doi: 10.18814/epiiugs/2012/v35i1/021.
Reid, A. J., and E. A. Jagodzinski (2011), PACE Geochronology: Results of collaborative geochronology projects 2009-2010, Report Book, Geological Survey of South Australia, Eastwood, NSW, Australia.
Reid, A. J., and J. L. Payne (2017), Magmatic zircon Lu–Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia, Lithos, 292-293, 294–306, doi: 10.1016/j.lithos.2017.08.010.
Reid, A. J., E. A. Jagodzinski, G. L. Fraser, and M. J. Pawley (2014), SHRIMP U–Pb zircon age constraints on the tectonics of the Neoarchean to early Paleoproterozoic transition within the Mulgathing Complex, Gawler Craton, South Australia, Precambrian research, 250, 27–49, doi: 10.1016/j.precamres.2014.05.013.
Reid, A. J., J. A. Halpin, and R. A. Dutch (2019), Timing and style of high-temperature metamorphism across the Western Gawler Craton during the Paleo- to Mesoproterozoic, Australian journal of earth sciences, 66(8), 1085–1111, doi: 10.1080/08120099.2019.1602565.
Retallack, G. J., A. Marconato, J. T. Osterhout, K. E. Watts, and I. N. Bindeman (2014), Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction, Journal of the Geological Society, 171(5), 709–722, doi: 10.1144/jgs2014-016.
Rooney, A. D., J. V. Strauss, A. D. Brandon, and F. A. Macdonald (2015), A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations, Geology, 43(5), 459–462, doi: 10.1130/G36511.1.
Rose, C. V., A. C. Maloof, B. Schoene, R. C. Ewing, U. Linnemann, M. Hofmann, and J. M. Cottle (2013), The end-Cryogenian glaciation of South Australia, Geoscience Canada, 40(4), 256, doi: 10.12789/geocanj.2013.40.019.
Rowan, M. G., T. E. Hearon, IV, R. A. Kernen, K. A. Giles, C. E. Gannaway-Dalton, N. J. Williams, J. C. Fiduk, T. F. Lawton, P. T. Hannah, and M. P. Fischer (2020), A review of allochthonous salt tectonics in the Flinders and Willouran ranges, South Australia, Australian journal of earth sciences, 67(6), 787–813, doi: 10.1080/08120099.2018.1553063.
Rubatto, D. (2002), Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism, Chemical geology, 184(1-2), 123–138, doi: 10.1016/s0009-2541(01)00355-2.
Shahin, S. (2016), Structural analysis and facies distribution of Cryogenian glacial rocks and regional structures in the Willouran Ranges, SA, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Shannon, R. D. (1976), Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica. Section A, Crystal physics, diffraction, theoretical and general crystallography, 32(5), 751–767, doi: 10.1107/S0567739476001551.
Sheard, M. J. (2012), MARREE, Tech. rep., Geological Survey of South Australia, Adelaide, South Australia.
Sheibner, E., and H. Basden (1998), Geology of New South Wales - Synthesis, Geology Memoir, vol. 13(2), Department of Mineral Resources, Sydney, New South Wales.
Shu, L., J. Yao, B. Wang, M. Faure, J. Charvet, and Y. Chen (2021), Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block, Earth-science reviews, 216(103596), 103,596, doi: 10.1016/j.earscirev.2021.103596.
Sláma, J., and J. Košler (2012), Effects of sampling and mineral separation on accuracy of detrital zircon studies, Geochemistry, geophysics, geosystems: G(3), 13(5), doi: 10.1029/2012GC004106.
Sláma, J., J. Košler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala,
N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, and M. J. Whitehouse (2008), Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis, Chemical geology, 249(1-2), 1–35, doi: 10.1016/j.chemgeo.2007.11.005.
Smithies, R. H., H. M. Howard, P. M. Evins, C. L. Kirkland, S. Bodorkos, and M. T. D. Wingate (2008), The west Musgrave Complex - new geological insights from recent mapping, geochronology, and geochemical studies, Tech. rep., Geological Survey of Western Australia.
Smithies, R. H., H. M. Howard, P. M. Evins, C. L. Kirkland, D. E. Kelsey, M. Hand, M. T. D. Wingate, A. S. Collins, and E. Belousova (2011), High-temperature granite magmatism, crust–mantle interaction and the mesoproterozoic intracontinental evolution of the Musgrave province, central Australia, Journal of petrology, 52(5), 931–958, doi: 10.1093/petrology/egr010.
Smits, R. G., W. J. Collins, M. Hand, R. Dutch, and J. Payne (2014), A Proterozoic Wilson cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia, Geology, 42(3), 231–234, doi: 10.1130/G35112.1.
Spaggiari, C. V., C. L. Kirkland, R. H. Smithies, M. T. D. Wingate, and E. A. Belousova (2015), Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: The Albany–Fraser Orogen, Western Australia, Precambrian research, 266, 440–466, doi: 10.1016/j.precamres.2015.05.036.
Spencer, C. J., C. L. Kirkland, and R. J. M. Taylor (2016), Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology, Geoscience frontiers, 7(4), 581–589, doi: 10.1016/j.gsf.2015.11.006.
Sprigg, R. C. (1952), Sedimentation in the Adelaide Geosyncline and the formation of the continental terrace, Sir douglas mawson anniversary volume, pp. 153–159.
Squire, R., I. Campbell, C. Allen, and C. Wilson (2006), Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?, Earth and planetary science letters, 250(1-2), 116–133, doi: 10.1016/j.epsl.2006.07.032.
Strauss, J. V., F. A. MacDonald, G. P. Halverson, N. J. Tosca, D. P. Schrag, and A. H. Knoll (2015), Stratigraphic evolution of the Neoproterozoic Callison Lake Formation: Linking the break-up of Rodinia to the Islay carbon isotope excursion, American journal of science, 315(10), 881–944, doi: 10.2475/10.2015.01.
Stüeken, E. E., R. Buick, and T. W. Lyons (2019), Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia, Precambrian research, 334(105474), 105,474, doi: 10.1016/j.precamres.2019.105474.
Swain, G., A. Woodhouse, M. Hand, K. Barovich, M. Schwarz, and C. M. Fanning (2005), Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implications, Precambrian research, 141(3-4), 106–136, doi: 10.1016/j.precamres.2005.08.004.
Tang, Q., Z. Zhang, C. Li, Y. Wang, and E. M. Ripley (2016), Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton: Implications for Rodinia reconstruction, Precambrian research, 286, 370–378, doi: 10.1016/j.precamres.2016.10.012.
Tonkin, D., and C. Wallace (2021), Stratigraphy, diagenesis and copper sulfide mineralisation in the Whyalla Sandstone, Stuart Shelf, and implications for stratabound mineral exploration, MESA Journal, 94(1), 23–40.
Toteff, S. (1977), The geology of the Adelaidean-Kanmantoo group sequences in the eastern Mount Lofty Ranges, Ph.D. thesis, The University of Adelaide, Adelaide.
Turnbull, R. E., J. J. Schwartz, M. L. Fiorentini, R. Jongens, N. J. Evans, T. Ludwig, B. J. McDonald, and K. A. Klepeis (2021), A hidden Rodinian lithospheric keel beneath Zealandia, Earth’s newly recognized continent, Geology, 49(8), 1009–1014, doi: 10.1130/g48711.1.
Uppil, R. K. (1980), Sedimentology of the late Precambrian Mundallio Subgroup : a clastic-carbonate (Dolomite, Magnesite) sequence in the Mt. Lofty and Flinders Ranges, South Australia, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Urlwin, B. (1992), Carbon isotope stratigraphy of the Late Proterozoic Wonoka Formation of the Adelaide Fold Belt: diagenetic assessment and interpretation of isotopic signature and correlations with previously measured isotopic curves, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Van der Wolff, E. J. (2020), Detrital provenance and geochronology of the Burra, Umberatana and Wilpena groups in the Mount Lofty Ranges, Ph.D. thesis, The University of Adelaide, Adelaide, South Australia.
Verdel, C., M. J. Campbell, and C. M. Allen (2021), Detrital zircon petrochronology of central Australia, and implications for the secular record of zircon trace element composition, Geosphere, 17(2), 538–560, doi: 10.1130/ges02300.1.
Vermeesch, P. (2018), IsoplotR: A free and open toolbox for geochronology, Geoscience frontiers, 9(5), 1479–1493, doi: 10.1016/j.gsf.2018.04.001.
Vermeesch, P., A. Resentini, and E. Garzanti (2016), An R package for statistical provenance analysis, Sedimentary geology, 336, 14–25, doi: 10.1016/j.sedgeo.2016.01.009.
Virgo, G. M., A. S. Collins, K. J. Amos, J. Farkaš, M. L. Blades, and D. Subarkah (2021), Descending into the “snowball”: High resolution sedimentological and geochemical analysis across the Tonian to Cryogenian boundary in South Australia, Precambrian research, 367(106449), 106,449, doi: 10.1016/j.precamres.2021.106449.
Virgo, G. M., A. S. Collins, M. L. Blades, and K. J. Amos (2023), Tectonic, eustatic and climate controls on facies architecture during the transition to the Neoproterozoic icehouse in the Adelaide Superbasin, Australia, Sedimentologika, 1(1), 1–38, doi: 10.57035/journals/sdk.2023.e11.1083.
Wade, B. P., D. E. Kelsey, M. Hand, and K. M. Barovich (2008), The Musgrave Province: Stitching north, west and south Australia, Precambrian research, 166(1-4), 370–386, doi: 10.1016/j.precamres.2007.05.007.
Wade, C. E. (2011), Definition of the Mesoproterozoic Ninnerie Supersuite, Curnamona Province, South Australia, MESA Journal, 62, 25–42.
Wen, B., D. A. D. Evans, and Y.-X. Li (2017), Neoproterozoic paleogeography of the Tarim Block: An extended or alternative “missing-link” model for Rodinia?, Earth and planetary science letters, 458, 92–106, doi: 10.1016/j.epsl.2016.10.030.
Wen, B., D. A. D. Evans, C. Wang, Y.-X. Li, and X. Jing (2018), A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly, Geology, 46(8), 687–690, doi: 10.1130/g40254.1.
Wiedenbeck, M., P. Allé, F. Corfu, W. L. Griffin, M. Meier, F. Oberli, A. V. O. N. Quadt, J. C. Roddick, and W. Spiegel (1995), Three natural zircon standards for u-Th-Pb, Lu-Hf, trace element and Ree analyses, Geostandards newsletter, 19(1), 1–23, doi: 10.1111/j.1751-908x.1995.tb00147.x.
Wiedenbeck, M., J. M. Hanchar, W. H. Peck, P. Sylvester, J. Valley, M. Whitehouse, A. Kronz, Y. Morishita, L. Nasdala, J. Fiebig, I. Franchi, J. P. Girard, R. C. Greenwood, R. Hinton, N. Kita, P. R. D. Mason, M. Norman, M. Ogasawara, P. M. Piccoli, D. Rhede, H. Satoh, B. Schulz-Dobrick, O. Skår, M. J. Spicuzza, K. Terada, A. Tindle, S. Togashi, T. Vennemann, Q. Xie, and Y. F. Zheng (2004), Further Characterisation of the 91500 Zircon Crystal, Geostandards and geoanalytical research, 28(1), 9–39, doi: 10.1111/j.1751-908X.2004.tb01041.x.
Williams, G. E., and P. W. Schmidt (2018), Shuram–Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean’s meridional overturning circulation, Geoscience frontiers, 9(2), 391–402, doi: 10.1016/j.gsf.2017.11.006.
Williams, G. E., and D. G. Tonkin (1985), Periglacial structures and palaeoclimatic significance of a late Precambrian block field in the Cattle Grid copper mine, Mount Gunson, South Australia, Australian journal of earth sciences, 32(3), 287–300, doi: 10.1080/08120098508729331.
Williams, G. E., V. A. Gostin, D. M. McKirdy, and W. V. Preiss (2008), The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: Sedimentary facies and palaeoenvironments, Precambrian research, 163(3-4), 307–331, doi: 10.1016/j.precamres.2007.12.001.
Williams, M. A., and A. J. Reid (2021), Linking lithostratigraphy to mineral potential for the Archean to earliest Paleoproterozoic Mulgathing Complex, central Gawler Craton, MESA Journal, 94, 4–18.
Williams, M. A., D. E. Kelsey, M. Hand, T. Raimondo, L. J. Morrissey, N. M. Tucker, and R. A. Dutch (2018), Further evidence for two metamorphic events in the Mawson Continent, Antarctic science, 30(1), 44–65, doi: 10.1017/s0954102017000451.
Wingate, M. T. D., and J. W. Giddings (2000), Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia–Laurentia connection at 755 Ma, Precambrian research, 100(1-3), 335–357, doi: 10.1016/s0301-9268(99)00080-7.
Wingate, M. T. D., I. H. Campbell, W. Compston, and G. M. Gibson (1998), Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia, Precambrian research, 87(3-4), 135–159, doi: 10.1016/s0301-9268(97)00072-7.
Wingate, M. T. D., S. A. Pisarevsky, and D. A. D. Evans (2002), Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS?: Rodinia connections between Australia and Laurentia, Terra nova, 14(2), 121–128, doi: 10.1046/j.1365-3121.2002.00401.x.
Wu, G., Y. Xiao, B. Bonin, D. Ma, X. Li, and G. Zhu (2018), Ca. 850 Ma magmatic events in the Tarim Craton: Age, geochemistry and implications for assembly of Rodinia supercontinent, Precambrian research, 305, 489–503, doi: 10.1016/j.precamres.2017.10.020.
Wu, G., S. Yang, W. Liu, R. D. Nance, X. Chen, Z. Wang, and Y. Xiao (2021), Switching from advancing to retreating subduction in the Neoproterozoic Tarim Craton, NW China: Implications for Rodinia breakup, Geoscience frontiers, 12(1), 161–171, doi: 10.1016/j.gsf.2020.03.013.
Young, G. M., and V. A. Gostin (1991), Late Proterozoic (Sturtian) succession of the North Flinders Basin, South Australia; An example of temperate glaciation in an active rift setting, in Geological Society of America Special Papers, Geological Society of America Special Papers, vol. 261, edited by J. B. Anderson and G. M. Ashley, pp. 207–222, Geological Society of America, doi: 10.1130/spe261-p207.
Young, T. (1995), The Bunyeroo Formation and its possible cold-water marine setting, Ph.D. thesis, University of Adelaide, Department of Geology and Geophysics, Adelaide, South Australia.
Zhang, C.-L., H.-B. Zou, Q.-B. Zhu, and X.-Y. Chen (2015), Late Mesoproterozoic to early Neoproterozoic ridge subduction along southern margin of the Jiangnan Orogen: New evidence from the Northeastern Jiangxi Ophiolite (NJO), South China, Precambrian research, 268, 1–15, doi: 10.1016/j.precamres.2015.07.005.
Zhang, F.-Q., Y. Dilek, X.-G. Cheng, H.-X. Wu, X.-B. Lin, and H.-L. Chen (2019), Late Neoproterozoic–early Paleozoic seismic structure–stratigraphy of the SW Tarim Block (China), its passive margin evolution and the Tarim–Rodinia breakup, Precambrian research, 334(105456), 105,456, doi: 10.1016/j.precamres.2019.105456.
Zhao, P., J. He, C. Deng, Y. Chen, and R. N. Mitchell (2021), Early Neoproterozoic (870–820 Ma) amalgamation of the Tarim craton (northwestern China) and the final assembly of Rodinia, Geology, 49(11), 1277–1282, doi: 10.1130/g48837.1.
Zheng, B., W. Zhu, R. Ge, H. Wu, J. He, and Y. Lu (2020), Proterozoic tectonic evolution of the Tarim Craton: New insights from detrital zircon U-Pb and Lu-Hf isotopes of metasediments in the Kuruktag area, Precambrian research, 346(105788), 105,788, doi: 10.1016/j.precamres.2020.105788.
Zhou, T., R. Ge, W. Zhu, and H. Wu (2021), Is there a Grenvillian orogen in the southwestern Tarim Craton?, Precambrian research, 354(106053), 106,053, doi: 10.1016/j.precamres.2020.106053.
Zhou, Y., H. Zhong, W.-G. Zhu, Z.-J. Bai, and C. Li (2022), Neoproterozoic protracted arc basaltic magmatism in the southern margin of the Yangtze Block, south China: New constraints from mafic-ultramafic intrusive rocks, Precambrian research, 368(106482), 106,482, doi: 10.1016/j.precamres.2021.106482.
Zi, J.-W., P. W. Haines, X.-C. Wang, F. Jourdan, B. Rasmussen, G. P. Halverson, S. Sheppard, and C.-F. Li (2019), Pyroxene 40 Ar/ 39 Ar dating of basalt and applications to large igneous provinces and Precambrian stratigraphic correlations, Journal of geophysical research. Solid earth, 124(8), 8313–8330, doi: 10.1029/2019jb017713.