The Importance of Anisotropic Viscosity in Numerical Models, for Olivine Textures in Shear and Subduction Deformations
Main Article Content
Abstract
Olivine lattice preferred orientation (LPO), or texture, forms in relation to deformation mechanisms such as dislocation creep and can be observed in the upper mantle as seismic anisotropy. Olivine is also mechanically anisotropic, meaning that it responds to stresses differently depending on the direction of the stress. Understanding the interplay between anisotropic viscosity (AV) and LPO, and their role in deformation, is necessary for relating seismic anisotropy to mantle flow patterns. In this study, we employ three methods to predict olivine texture (D-Rex, MDM, and MDM+AV) in a shear box model and a subduction model. D-Rex and MDM are two representative texture development methods that have been compared before, and our results are in line with previous studies showing that textures computed by D-Rex develop faster and are stronger and more point-like than textures calculated with MDM. MDM+AV uses the same isotropic mantle stresses and particle paths as D-Rex and MDM but includes the effect of AV for texture predictions. MDM+AV predicts a texture similar to MDM with a distinct girdle-like orientation for simple shear deformation or at low strain in the subduction model. At larger strains, MDM+AV’s textures are more point-like and stronger compared to the other two methods. The effective viscosity for MDM+AV drops by up to 60% in a shear box model and can be either strengthened or weakened relative to isotropic viscosity for different regions of the subduction model experiencing different patterns of deformation. Our results emphasize the significant role of AV in olivine texture development, which could substantially affect geodynamic processes in the upper mantle.
Article Details
References
Bangerth, W., J. Dannberg, R. Gassmoeller, and T. Heister (2020), ASPECT v2.2.0, doi: 10.5281/zenodo.3924604.
Bangerth, W., J. Dannberg, M. Fraters, R. Gassmoeller, A. Glerum, T. Heister, R. Myhill, and J. Naliboff (2023), Wang-yijun/aspect: ASPECT for manuscript1, doi: 10.5281/zenodo.8219018.
Blackman, D. K., D. E. Boyce, O. Castelnau, P. R. Dawson, and G. Laske (2017), Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy, Geophysical Journal International, 210(3), 1481–1493, doi: 10.1093/gji/ggx251.
Boneh, Y., and P. Skemer (2014), The effect of deformation history on the evolution of olivine CPO, Earth and planetary science letters, 406, 213–222, doi: 10.1016/j.epsl.2014.09.018.
Boneh, Y., L. F. G. Morales, E. Kaminski, and P. Skemer (2015), Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle, Geochemistry, Geophysics, Geosystems, 16(10), 3436–3455, doi: 10.1002/2015GC005964.
Christensen, U. R. (1987), Some geodynamical effects of anisotropic viscosity, Geophysical Journal International, 91(3), 711–736, doi: 10.1111/j.1365-246X.1987.tb01666.x.
Di Giuseppe, E., J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini (2008), Slab stiffness control of trench motion: Insights from numerical models, Geochemistry, Geophysics, Geosystems, 9(2), doi: 10.1029/2007GC001776.
Falus, G., A. Tommasi, and V. Soustelle (2011), The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions, Journal of Structural Geology, 33(11), 1528–1540, doi: 10.1016/j.jsg.2011.09.010.
Fraters, M. (2020), The geodynamic world builder, doi: 10.5281/zenodo.3900603.
Fraters, M., C. Thieulot, A. van den Berg, and W. Spakman (2019), The geodynamic world builder: a solution for complex initial conditions in numerical modeling, Solid earth, 10(5), 1785–1807, doi: 10.5194/se-10-1785-2019.
Fraters, M. R. T., and M. I. Billen (2021), On the implementation and usability of crystal preferred orientation evolution in geodynamic modeling, Geochemistry, Geophysics, Geosystems, 22(10), doi: 10.1029/2021gc009846.
Han, D., and J. Wahr (1997), An analysis of anisotropic mantle viscosity, and its possible effects on post-glacial rebound, Physics of the Earth and Planetary Interiors, 102(1), 33–50, doi: 10.1016/S0031-9201(96)03268-2.
Hansen, L. N., M. E. Zimmerman, and D. L. Kohlstedt (2012), Laboratory measurements of the viscous anisotropy of olivine aggregates, Nature, 492(7429), 415–418, doi: 10.1038/nature11671.
Hansen, L. N., Y.-H. Zhao, M. E. Zimmerman, and D. L. Kohlstedt (2014), Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy, Earth and planetary science letters, 387, 157–168, doi: 10.1016/j.epsl.2013.11.009.
Hansen, L. N., J. M. Warren, M. E. Zimmerman, and D. L. Kohlstedt (2016a), Viscous anisotropy of textured olivine aggregates, part 1: Measurement of the magnitude and evolution of anisotropy, Earth and planetary science letters, 445, 92–103, doi: 10.1016/j.epsl.2016.04.008.
Hansen, L. N., C. P. Conrad, Y. Boneh, P. Skemer, J. M. Warren, and D. L. Kohlstedt (2016b), Viscous anisotropy of textured olivine aggregates: 2. micromechanical model, Journal of Geophysical Research, [Solid Earth], 121(10), 7137–7160, doi: 10.1002/2016JB013240.
Hansen, L. N., M. Faccenda, and J. M. Warren (2021), A review of mechanisms generating seismic anisotropy in the upper mantle, Physics of the Earth and Planetary Interiors, 313, 106,662, doi: 10.1016/j.pepi.2021.106662.
Heister, T., J. Dannberg, R. Gassmöller, and W. Bangerth (2017), High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems, Geophysical Journal International, 210(2), 833–851, doi: 10.1093/gji/ggx195.
Hill, R. (1948), A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London, 193(1033), 281–297, doi: 10.1098/rspa.1948.0045.
Kaminski, É., and N. M. Ribe (2001), A kinematic model for recrystallization and texture development in olivine polycrystals, Earth and planetary science letters, 189(3), 253–267, doi: 10.1016/S0012-821X(01)00356-9.
Kaminski, É., N. M. Ribe, and J. T. Browaeys (2004), D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle, Geophysical Journal International, 158(2), 744–752, doi: 10.1111/j.1365-246X.2004.02308.x.
Karato, S.-I., H. Jung, I. Katayama, and P. Skemer (2008), Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annual review of earth and planetary sciences, 36(Volume 36, 2008), 59–95, doi: 10.1146/annurev.earth.36.031207.124120.
Király, Á., C. P. Conrad, and L. N. Hansen (2020), Evolving viscous anisotropy in the upper mantle and its geodynamic implications, Geochemistry, Geophysics, Geosystems, 21(10), doi: 10.1029/2020gc009159.
Knoll, M., A. Tommasi, R. Logé, and J. Signorelli (2009), A multiscale approach to model the anisotropic deformation of lithospheric plates, Geochemistry: Exploration, Environment, Analysis, 10, doi: 10.1029/2009GC002423.
Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International, 191(1), 12–29, doi: 10.1111/j.1365-246X.2012.05609.x.
Lee, K.-H., Z. Jiang, and S.-I. Karato (2002), A scanning electron microscope study of the effects of dynamic recrystallization on lattice preferred orientation in olivine, Tectonophysics, 351(4), 331–341, doi: 10.1016/S0040-1951(02)00250-0.
Lev, E., and B. H. Hager (2008), Rayleigh–Taylor instabilities with anisotropic lithospheric viscosity, Geophysical Journal International, 173(3), 806–814, doi: 10.1111/j.1365-246X.2008.03731.x.
Lev, E., and B. H. Hager (2011), Anisotropic viscosity changes subduction zone thermal structure: ANISOTROPIC VISCOSITY CHANGES WEDGE THERMAL STRUCTURE, Geochemistry, Geophysics, Geosystems, 12(4), doi: 10.1029/2010GC003382.
Long, M. D., and T. W. Becker (2010), Mantle dynamics and seismic anisotropy, Earth and planetary science letters, 297(3), 341–354, doi: 10.1016/j.epsl.2010.06.036.
Long, M. D., and P. G. Silver (2009), Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions, Surveys in Geophysics, 30(4), 407–461, doi: 10.1007/s10712-009-9075-1.
Lopez-Sanchez, M. A., A. Tommasi, W. B. Ismail, and F. Barou (2021), Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction, Tectonophysics, 815, 228,916, doi: 10.1016/j.tecto.2021.228916.
Mameri, L., A. Tommasi, J. Signorelli, and L. N. Hansen (2019), Predicting viscoplastic anisotropy in the upper mantle: a comparison between experiments and polycrystal plasticity models, Physics of the Earth and Planetary Interiors, 286, 69–80, doi: 10.1016/j.pepi.2018.11.002.
Mameri, L., A. Tommasi, J. Signorelli, and R. Hassani (2020), Olivine-induced viscous anisotropy in fossil strike-slip mantle shear zones and associated strain localization in the crust, Geophysical Journal International, 224(1), 608–625, doi: 10.1093/gji/ggaa400.
Mameri, L., A. Tommasi, A. Vauchez, J. Signorelli, and R. Hassani (2023), Structural inheritance controlled by olivine viscous anisotropy in fossil mantle shear zones with different past kinematics, Tectonophysics, 863, 229,982, doi: 10.1016/j.tecto.2023.229982.
McKenzie, D. (1979), Finite deformation during fluid flow, Geophysical Journal International, 58(3), 689–715, doi: 10.1111/j.1365-246X.1979.tb04803.x.
Molinari, A., G. R. Canova, and S. Ahzi (1987), A self consistent approach of the large deformation polycrystal viscoplasticity, Acta Metallurgica, 35(12), 2983–2994, doi: 10.1016/0001-6160(87)90297-5.
Mühlhaus, H.-B., L. Moresi, B. Hobbs, and F. Dufour (2002), Large amplitude folding in finely layered viscoelastic rock structures, Pure and Applied Geophysics, 159(10), 2311–2333, doi: 10.1007/s00024-002-8737-4.
Ribe, N. M., and Y. Yu (1991), A theory for plastic deformation and textural evolution of olivine polycrystals, Journal of geophysical research, 96(B5), 8325, doi: 10.1029/90jb02721.
Sarma, G. B., and P. R. Dawson (1996), Effects of interactions among crystals on the inhomogeneous deformations of polycrystals, Acta materialia, 44(5), 1937–1953, doi: 10.1016/1359-6454(95)00309-6.
Schellart, W. P., and L. Moresi (2013), A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate, Journal of Geophysical Research, [Solid Earth], 118(6), 3221–3248, doi: 10.1002/jgrb.50173.
Signorelli, J., R. Hassani, A. Tommasi, and L. Mameri (2021), An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows, Journal of Theoretical, Computational and Applied Mechanics, p. 6737, doi: 10.46298/jtcam.6737.
Skemer, P., I. Katayama, Z. Jiang, and S.-I. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1), 157–167, doi: 10.1016/j.tecto.2005.08.023.
Tommasi, A., and A. Vauchez (2001), Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle, Earth and planetary science letters, 185(1), 199–210, doi: 10.1016/S0012-821X(00)00350-2.
Tommasi, A., D. Mainprice, G. Canova, and Y. Chastel (2000), Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy, Journal of geophysical research, 105(B4), 7893–7908, doi: 10.1029/1999jb900411.
Vollmer, F. W. (1990), An application of eigenvalue methods to structural domain analysis, Geological Society of America bulletin, 102(6), 786–791, doi: 10.1130/0016-7606(1990)1020786:AAOEMT2.3.CO;2.
Wang, Y. (2023), Scripts to reproduce the results in manuscript1 (wang et al. 2023), doi: 10.5281/zenodo.8247969.