Effect of Grain-Size and Textural Weakening in Polyphase Crustal and Mantle Lithospheric Shear Zones

Main Article Content

Jonas Ruh
Whitney Behr
Leif Tokle

Abstract

Strain localization to form narrow plate boundary shear zones in Earth’s lithosphere requires a significant amount of strain weakening. Here we investigate the relative contributions of grain-size-sensitive weakening versus textural weakening in polyphase shear zones in granitoid and peridotitic rocks through two-dimensional centimetre-scale bulk simple shear numerical models. The models deploy both constant grain size (only textural weakening) and dynamic grain-size evolution based on the paleowattmeter. Our results reveal that for granitoid rocks, textural weakening dominates, especially at temperatures around 550 °C, while grain-size-sensitive weakening plays a secondary yet significant role. For peridotitic rocks, intense weakening is evident below temperatures of ~1000 °C due to grain-size reduction, while textural weakening has a minor effect on weakening for experiments above 1000 °C. Two-dimensional experiments are compared to one-dimensional, single-phase models to reveal the effect of geometrical complexities in stress and grain-size evolution. These results are discussed in the context of natural lithospheric shear zones and are compared with established piezometers for individual mineral phases. Our findings underscore the vital role of grain-size-sensitive rheologies, particularly in the mantle lithosphere, for the initial weakening of ductile shear zones. These insights offer quantitative constraints that advance our understanding of the long-term strength of lithospheric plate boundaries.

Article Details

How to Cite
Ruh, J., Behr, W., & Tokle, L. (2024). Effect of Grain-Size and Textural Weakening in Polyphase Crustal and Mantle Lithospheric Shear Zones. τeκτoniκa, 2(1), 91–110. https://doi.org/10.55575/tektonika2024.2.1.68
Section
Articles

References

Austin, N. J., and B. Evans (2007), Paleowattmeters: A scaling relation for dynamically recrystallized grain size, Geology, 35(4), 343–346, doi: 10.1130/G23244A.1.

Behn, M. D., G. Hirth, and J. R. Elsenbeck, II (2009), Implications of grain size evolution on the seismic structure of the oceanic upper mantle, Earth and planetary science letters, 282(1-4), 178–189, doi: 10.1016/j.epsl.2009.03.014.

Behr, W. M., and J. P. Platt (2011), A naturally constrained stress profile through the middle crust in an extensional terrane, Earth and planetary science letters, 303(3-4), 181–192, doi: 10.1016/j.epsl.2010.11.044.

Bercovici, D. (2003), The generation of plate tectonics from mantle convection, Earth and planetary science letters, 205(3-4), 107–121, doi: 10.1016/s0012-821x(02)01009-9.

Bercovici, D., Y. Ricard, and G. Schubert (2001), A two-phase model for compaction and damage: 1. general theory, Journal of geophysical research, 106(B5), 8887–8906, doi: 10.1029/2000jb900430.

Braun, J., J. Chéry, A. Poliakov, D. Mainprice, A. Vauchez, A. Tomassi, and M. Daignières (1999), A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine, Journal of geophysical research, 104(B11), 25,167–25,181, doi: 10.1029/1999jb900214.

Brodie, K. H., and E. H. Rutter (2000), Deformation mechanisms and rheology: why marble is weaker than quartzite, Journal of the Geological Society, 157(6), 1093–1096, doi: 10.1144/jgs.157.6.1093.

Bruijn, R. H., and P. Skemer (2014), Grain-size sensitive rheology of orthopyroxene, Geophysical research letters, 41(14), 4894–4903, doi: 10.1002/2014GL060607.

Bystricky, M., K. Kunze, L. Burlini, and J. Burg (2000), High shear strain of olivine aggregates: rheological and seismic consequences, Science, 290(5496), 1564–1567, doi: 10.1126/science.290.5496.1564.

Ceccato, A., L. Menegon, G. Pennacchioni, and L. F. G. Morales (2018), Myrmekite and strain weakening in granitoid mylonites, Solid earth, 9(6), 1399–1419, doi: 10.5194/se-9-1399-2018.

Cross, A. J., and P. Skemer (2019), Rates of dynamic recrystallization in geologic materials, Journal of Geophysical Research-Solid Earth, 124(2), 1324–1342, doi: 10.1029/2018JB016201.

Dabrowski, M., D. W. Schmid, and Y. Y. Podladchikov (2012), A two-phase composite in simple shear: Effective mechanical anisotropy development and localization potential, Journal of Geophysical Research, [Solid Earth], 117.

Dannberg, J., Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill (2017), The importance of grain size to mantle dynamics and seismological observations, Geochemistry, Geophysics, Geosystems, 18(8), 3034–3061, doi: 10.1002/2017gc006944.

De Bresser, J. H. P., J. H. Ter Heege, and C. J. Spiers (2001), Grain size reduction by dynamic recrystallization: can it result in major theological weakening?, Geologische Rundschau: Zeitschrift fur allgemeine Geologie, 90(1), 28–45.

Dijkstra, A. H., M. R. Drury, R. L. M. Vissers, J. Newman, and H. L. M. Van Roermund (2004), Shear zones in the upper mantle: evidence from alpine- and ophiolite-type peridotite massifs, Flow Processes in Faults and Shear Zones, 224, 11–24, doi: Doi 10.1144/Gsl.Sp.2004.224.01.02.

Dong, Y., S. Cao, X. Cheng, J. Liu, and H. Cao (2019), Grain-size reduction of feldspar and flow of deformed granites within the gaoligong shear zone, southwestern yunnan, china, SCIENCE CHINA Earth Sciences, 62(9), 1379–1398, doi: 10.1007/s11430-018-9351-8.

Dresen, G., Z. Wang, and Q. Bai (1996), Kinetics of grain growth in anorthite, Tectonophysics, 258(1-4), 251–262, doi: 10.1016/0040-1951(95)00203-0.

Duretz, T., S. M. Schmalholz, and Y. Y. Podladchikov (2015), Shear heating-induced strain localization across the scales, Philosophical Magazine A, 95(28-30), 3192–3207, doi: 10.1080/14786435.2015.1054327.

Dygert, N., R. E. Bernard, and W. M. Behr (2019), Great basin mantle xenoliths record active lithospheric downwelling beneath central nevada, Geochemistry, Geophysics, Geosystems, 20(2), 751–772, doi: 10.1029/2018gc007834.

Farla, R. J. M., S.-I. Karato, and Z. Cai (2013), Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization, Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16,355–16,360, doi: 10.1073/pnas.1218335110.

Finch, M. A., P. D. Bons, F. Steinbach, A. Griera, M. G. Llorens, E. Gomez-Rivas, H. Ran, and T. de Riese (2020), The ephemeral development of c’ shear bands: A numerical modelling approach, Journal of Structural Geology, 139.

Fossen, H., and G. C. G. Cavalcante (2017), Shear zones – a review, Earth-science reviews, 171, 434–455, doi: 10.1016/j.earscirev.2017.05.002.

Fuchs, L., and T. W. Becker (2019), Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability, Geophysical Journal International, 218(1), 601–618, doi: 10.1093/gji/ggz167.

Gerya, T. V., D. Bercovici, and T. W. Becker (2021), Dynamic slab segmentation due to brittle-ductile damage in the outer rise,

Nature, 599(7884), 245–250, doi: 10.1038/s41586-021-03937-x.

Goncalves, P., E. Oliot, D. Marquer, and J. A. D. Connolly (2012), Role of chemical processes on shear zone formation: an example from the grimsel metagranodiorite (aar massif, central alps), Journal of Metamorphic Geology, 30(7), 703–722, doi: 10.1111/j.1525-1314.2012.00991.x.

Hansen, L. N., and J. M. Warren (2015), Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone, Journal of Geophysical Research, [Solid Earth], 120(4), 2717–2738.

Hartz, E. H., and Y. Y. Podladchikov (2008), Toasting the jelly sandwich: The effect of shear heating on lithospheric geotherms and strength, Geology, 36(4), 331–334, doi: 10.1130/G24424A.1.

Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, Journal of geophysical research, 111(B10), doi: 10.1029/2005JB004194.

Herwegh, M., T. Poulet, A. Karrech, and K. Regenauer-Lieb (2014), From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling, Journal of Geophysical Research, [Solid Earth], 119(2), 900–918, doi: 10.1002/2013jb010701.

Hirth, G., and D. Kohlstedt (2003), Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, Geophysical monograph, 138, 83–106.

Hirth, G., and J. Tullis (1992), Dislocation creep regimes in quartz aggregates, Journal of Structural Geology, 14(2), 145–159, doi: 10.1016/0191-8141(92)90053-Y.

Holyoke, C. W., III, and J. Tullis (2006), Mechanisms of weak phase interconnection and the effects of phase strength contrast on fabric development, Journal of Structural Geology, 28(4), 621–640, doi: 10.1016/j.jsg.2006.01.008.

Hopper, J., and W. Buck (1993), The initiation of rifting at constant tectonic force: Role of diffusion creep, Journal of geophysical research, 98(B9), 16,213–16,221, doi: 10.1029/93JB01725.

Jaroslow, G. E., G. Hirth, and H. J. B. Dick (1996), Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere, Tectonophysics, 256(1-4), 17–37, doi: 10.1016/0040-1951(95)00163-8.

Ji, S., Z. Jiang, E. Rybacki, R. Wirth, D. Prior, and B. Xia (2004), Strain softening and microstructural evolution of anorthite aggregates and quartz–anorthite layered composites deformed in torsion, Earth and planetary science letters, 222(2), 377–390, doi: 10.1016/j.epsl.2004.03.021.

Kaus, B., and Y. Podladchikov (2006), Initiation of localized shear zones in viscoelastoplastic rocks, Journal of geophysical research, 111(B4), doi: 10.1029/2005JB003652.

Kidder, S., G. Hirth, J.-P. Avouac, and W. Behr (2016), The influence of stress history on the grain size and microstructure of experimentally deformed quartzite, Journal of Structural Geology, 83, 194–206, doi: 10.1016/j.jsg.2015.12.004.

Kronenberg, A. K., S. H. Kirby, and J. Pinkston (1990), Basal slip and mechanical anisotropy of biotite, Journal of geophysical research, 95(B12), 19,257–19,278, doi: 10.1029/jb095ib12p19257.

Lawlis, J. D. (1998), High temperature creep of synthetic olivine-enstatite aggregates, The Pennsylvania State University.

Liao, J., Q. Wang, T. Gerya, and M. D. Ballmer (2017), Modeling craton destruction by hydration-induced weakening of the upper mantle, Journal of Geophysical Research, [Solid Earth], 122(9), 7449–7466, doi: 10.1002/2017jb014157.

Linckens, J., M. Herwegh, O. Muntener, and I. Mercolli (2011), Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation, Journal of Geophysical Research, [Solid Earth], 116.

Linckens, J., M. Herwegh, and O. Müntener (2015), Small quantity but large effect — how minor phases control strain localization in upper mantle shear zones, Tectonophysics, 643, 26–43, doi: 10.1016/j.tecto.2014.12.008.

Marti, S., H. Stünitz, R. Heilbronner, O. Plümper, and M. Drury (2017), Experimental investigation of the brittle-viscous transition in mafic rocks – interplay between fracturing, reaction, and viscous deformation, Journal of Structural Geology, 105, 62–79, doi: 10.1016/j.jsg.2017.10.011.

Marti, S., H. Stünitz, R. Heilbronner, O. Plümper, and R. Kilian (2018), Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures, Solid earth, 9(4), 985–1009, doi: 10.5194/se-9-985-2018.

Matysiak, A. K., and C. A. Trepmann (2015), The deformation record of olivine in mylonitic peridotites from the finero complex, ivrea zone: Separate deformation cycles during exhumation, Tectonics, 34(12), 2514–2533, doi: 10.1002/2015tc003904.

Menegon, L., H. Stünitz, P. Nasipuri, R. Heilbronner, and H. Svahnberg (2013), Transition from fracturing to viscous flow in granulite facies perthitic feldspar (lofoten, norway), Journal of Structural Geology, 48, 95–112, doi: 10.1016/j.jsg.2012.12.004.

Montési, L. G. J. (2007), A constitutive model for layer development in shear zones near the brittle-ductile transition, Geophysical research letters, 34(8), doi: 10.1029/2007gl029250.

Montési, L. G. J. (2013), Fabric development as the key for forming ductile shear zones and enabling plate tectonics, Journal of Structural Geology, 50, 254–266, doi: 10.1016/j.jsg.2012.12.011.

Moresi, L., F. Dufour, and H.-B. Mühlhaus (2003), A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of computational physics, 184(2), 476–497, doi: 10.1016/s0021-9991(02)00031-1.

Ohuchi, T., S.-I. Karato, and K. Fujino (2011), Strength of single-crystal orthopyroxene under lithospheric conditions, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 161(6), 961–975, doi: 10.1007/s00410-010-0574-3.

Oliot, E., P. Goncalves, and D. Marquer (2010), Role of plagioclase and reaction softening in a metagranite shear zone at mid-crustal conditions (gotthard massif, swiss central alps), Journal of Metamorphic Geology, 28(8), 849–871, doi: 10.1111/j.1525-1314.2010.00897.x.

Platt, J. P., and W. M. Behr (2011), Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere, Journal of Structural Geology, 33(4), 537–550, doi: 10.1016/j.jsg.2011.01.018.

Rast, M., and J. B. Ruh (2021), Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws, Journal of Structural Geology, 149(104375), 104,375, doi: 10.1016/j.jsg.2021.104375.

Rast, M., A. Galli, J. B. Ruh, M. Guillong, and C. Madonna (2022), Geology along the bedretto tunnel: kinematic and geochronological constraints on the evolution of the gotthard massif (central alps), Swiss Journal of Geosciences, 115(1).

Richter, B., H. Stünitz, and R. Heilbronner (2018), The brittle-to-viscous transition in polycrystalline quartz: An experimental study, Journal of Structural Geology, 114, 1–21, doi: 10.1016/j.jsg.2018.06.005.

Rozel, A., Y. Ricard, and D. Bercovici (2011), A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization, Geophysical Journal International, 184(2), 719–728, doi: 10.1111/j.1365-246X.2010.04875.x.

Ruh, J. B., and J. Vergés (2018), Effects of reactivated extensional basement faults on structural evolution of fold-and-thrust belts: Insights from numerical modelling applied to the kopet dagh mountains, Tectonophysics.

Ruh, J. B., L. Tokle, and W. M. Behr (2022), Grain-size-evolution controls on lithospheric weakening during continental rifting, Nature geoscience, 15(7), 585–590, doi: 10.1038/s41561-022-00964-9.

Rutter, E. H., and K. H. Brodie (1988), The role of tectonic grain size reduction in the rheological stratification of the lithosphere, Geologische Rundschau: Zeitschrift fur allgemeine Geologie, 77(1), 295–307, doi: 10.1007/bf01848691.

Rutter, E. H., and K. H. Brodie (2004), Experimental grain size-sensitive flow of hot-pressed brazilian quartz aggregates, Journal of Structural Geology, 26(11), 2011–2023, doi: 10.1016/j.jsg.2004.04.006.

Rybacki, E., and G. Dresen (2000), Dislocation and diffusion creep of synthetic anorthite aggregates, Journal of geophysical research, 105(B11), 26,017–26,036, doi: 10.1029/2000JB900223.

Rybacki, E., and G. Dresen (2004), Deformation mechanism maps for feldspar rocks, Tectonophysics, 382(3-4), 173–187, doi: 10.1016/j.tecto.2004.01.006.

Rybacki, E., M. Gottschalk, R. Wirth, and G. Dresen (2006), Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates, Journal of Geophysical Research, [Solid Earth], 111(B3).

Schierjott, J., A. Rozel, and P. Tackley (2020a), On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles, Solid earth, 11(3), 959–982, doi: 10.5194/se-11-959-2020.

Schierjott, J. C., M. Thielmann, A. B. Rozel, G. J. Golabek, and T. V. Gerya (2020b), Can grain size reduction initiate transform faults?—insights from a 3-d numerical study, Tectonics, 39(10), e2019TC005,793, doi: 10.1029/2019tc005793.

Schön, J. H. (2015), Physical properties of rocks, Handbook of Petroleum Exploration and Production, 2 ed., Elsevier, Amsterdam.

Shea, W. T., and A. K. Kronenberg (1992), Rheology and deformation mechanisms of an isotropic mica schist, Journal of Geophysical Research, [Solid Earth], 97(B11), 15,201–15,237.

Shinevar, W. J., M. D. Behn, and G. Hirth (2015), Compositional dependence of lower crustal viscosity, Geophysical research letters, 42(20), 8333–8340.

Skemer, P., and S.-I. Karato (2007), Effects of solute segregation on the grain-growth kinetics of orthopyroxene with implications for the deformation of the upper mantle, Physics of the Earth and Planetary Interiors, 164(3-4), 186–196, doi: 10.1016/j.pepi.2007.06.011.

Speciale, P. A., W. M. Behr, G. Hirth, and L. Tokle (2020), Rates of olivine grain growth during dynamic recrystallization and postdeformation annealing, Journal of Geophysical Research, [Solid Earth], 125(11), doi: 10.1029/2020jb020415.

Speciale, P. A., L. Tokle, and W. M. Behr (2022), Feldspar and orthopyroxene piezometers constrained using quartz–feldspar and olivine–orthopyroxene mineral pairs from natural mylonites, Journal of Structural Geology, 154(104495), 104,495, doi: 10.1016/j.jsg.2021.104495.

Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophysical research letters, 30(21), doi: 10.1029/2003gl018444.

Stipp, M., H. Stunitz, R. Heilbronner, and S. M. Schmid (2002), The eastern tonale fault zone: a ’natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 degrees C, Journal of Structural Geology, 24(12), 1861–1884.

Thielmann, M., and B. J. P. Kaus (2012), Shear heating induced lithospheric-scale localization: Does it result in subduction?, Earth and planetary science letters, 359-360, 1–13, doi: 10.1016/j.epsl.2012.10.002.

Tokle, L., and G. Hirth (2021), Assessment of quartz grain growth and the application of the wattmeter to predict quartz recrystallized grain sizes, Journal of Geophysical Research, [Solid Earth], 126(7), doi: 10.1029/2020jb021475.

Tokle, L., G. Hirth, and W. M. Behr (2019), Flow laws and fabric transitions in wet quartzite, Earth and planetary science letters, 505, 152–161, doi: 10.1016/j.epsl.2018.10.017.

Tokle, L., G. Hirth, and H. Stünitz (2023), The effect of muscovite on the microstructural evolution and rheology of quartzite in general shear, Journal of Structural Geology, 169(104835), 104,835, doi: 10.1016/j.jsg.2023.104835.

Tommasi, A., A. Vauchez, L. A. D. Femandes, and C. Porcher (1994), Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern brazil, Tectonics, 13(2), 421–437, doi: 10.1029/93TC03319.

Trouw, R. A. J., C. W. Passchier, and D. J. Wiersma (2009), Atlas of Mylonites - and related microstructures, Springer Science & Business Media.

Tullis, J., R. Yund, and J. Farver (1996), Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones, Geology, 24(1), 63, doi: 10.1130/0091-7613(1996)024<0063:defdif>2.3.co;2.

Van der Wal, D., P. Chopra, M. Drury, and J. D. Fitz Gerald (1993), Relationships between dynamically recrystallized Grain-Size and deformation conditions in experimentally deformed olivine rocks, Geophysical research letters, 20(14), 1479–1482.

Vauchez, A., A. Tommasi, and D. Mainprice (2012), Faults (shear zones) in the earth’s mantle, Tectonophysics, 558-559, 1–27, doi: 10.1016/j.tecto.2012.06.006.

Viegas, G., L. Menegon, and C. Archanjo (2016), Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (pernambuco shear zone, NE brazil), Solid earth, 7(2), 375–396, doi: 10.5194/se-7-375-2016.

Vissers, R. L. M., M. R. Drury, E. H. Hoogerduijn, C. J. Spiers, and D. J. T. Van der Wal (1995), Mantle shear zones and their effect on lithosphere strength during continental breakup, Tectonophysics, 249(3-4), 155–171.

Walker, A. N., E. H. Rutter, and K. H. Brodie (1990), Experimental study of grain-size sensitive flow of synthetic, hot pressed calcite rocks, in Deformation Mechanisms, Rheology, and Tectonics, vol. Special Publication 54, edited by R. J. Knipe and E. H. Rutter, pp. 259–284, Geological Society of London.

Warren, J. M., and G. Hirth (2006), Grain size sensitive deformation mechanisms in naturally deformed peridotites, Earth and planetary science letters, 248(1-2), 438–450, doi: 10.1016/j.epsl.2006.06.006.

Zhang, G., S. Mei, M. Song, and others (2017), Diffusion creep of enstatite at high pressures under hydrous conditions, Journal of geophysical research, 122(10), 7718–7728.

Zhang, G., S. Mei, and M. Song (2020), Effect of water on the dislocation creep of enstatite aggregates at 300 MPa, Geophysical research letters, 47(5), doi: 10.1029/2019gl085895.