3D Interaction of Tectonics and Surface Processes Explains Fault Network Evolution of the Dead Sea Fault

Main Article Content

Esther L. Heckenbach
Sascha Brune
Anne C. Glerum
Roi Granot
Yariv Hamiel
Stephan V. Sobolev
Derek Neuharth

Abstract

Releasing and restraining bends are complementary features of continental strike-slip faults. The Dead Sea Basin of the strike-slip Dead Sea Fault is a classical example of a releasing bend with an asymmetric, deep basin structure. However, the intrinsic relationship to its northern counterpart, the restraining bend that created the Lebanese mountains, remains unclear. Here, we present 3D coupled geodynamic and landscape evolution models that include both the releasing and the restraining bend in a single framework. These simulations demonstrate that the structural basin asymmetry is a consequence of strain localization processes, while sediments control the basin depth. Local extension emerges due to strength heterogeneities and a misalignment of faults and the overall stress field in an area where regional tectonics are dominated by strike-slip motion. Furthermore, we reveal a crustal thinning and thickening pattern that intensifies with surface process efficiency. Along-strike deformation is linked through coupled crustal flow driven by gravitational potential energy which is opposed by deposition at the releasing bend and enhanced by erosion around the restraining bend. With much of our model setup being kept generic, our results provide templates for the evolution of fault bends worldwide.

Article Details

How to Cite
Heckenbach, E. L., Brune, S., Glerum, A. C., Granot, R., Hamiel, Y., Sobolev, S. V. ., & Neuharth, D. . (2024). 3D Interaction of Tectonics and Surface Processes Explains Fault Network Evolution of the Dead Sea Fault. τeκτoniκa, 2(2), 33–51. https://doi.org/10.55575/tektonika2024.2.2.75
Section
Articles

References

Aldersons, F., Z. Ben-Avraham, A. Hofstetter, E. Kissling, and T. Al-Yazjeen (2003), Lower-crustal strength under the Dead Sea basin from local earthquake data and rheological modeling, Earth and Planetary Science Letters, 214(1), 129–142, doi: 10.1016/S0012-821X(03)00381-9.

Arpat, E. (1972), The East Anatolian fault system: thoughts on its development, MTA Bull., 78, 33–39.

Ben-Avraham, Z., and G. Schubert (2006), Deep “drop down” basin in the southern Dead Sea, Earth and Planetary Science Letters, 251(3), 254–263, doi: 10.1016/j.epsl.2006.09.008.

Ben-Avraham, Z., and M. D. Zoback (1992), Transform-normal extension and asymmetric basins: An alternative to pull-apart models, Geology, 20(5), 423–426, doi: 10.1130/0091-7613(1992)020<0423:TNEAAB>2.3.CO;2.

Ben-Avraham, Z., R. Hänel, and H. Villinger (1978), Heat flow through the Dead Sea rift, Marine Geology, 28(3), 253–269, doi: 10.1016/0025-3227(78)90021-X.

Ben-Avraham, Z., Z. Garfunkel, and M. Lazar (2008), Geology and Evolution of the Southern Dead Sea Fault with Emphasis on Subsurface Structure, Annual Review of Earth and Planetary Sciences, 36(1), 357–387, doi: 10.1146/annurev.earth.36.031207.124201.

Ben-Avraham, Z., V. Lyakhovsky, and G. Schubert (2010), Drop-down formation of deep basins along the Dead Sea and other strike-slip fault systems, Geophysical Journal International, 181(1), 185–197, doi: 10.1111/j.1365-246X.2010.04525.x.

Berry, M., J. van Wijk, D. Cadol, E. Emry, and D. Garcia-Castellanos (2019), Endorheic-Exorheic Transitions of the Rio Grande and East African Rifts, Geochemistry, Geophysics, Geosystems, 20(7), 3705–3729, doi: 10.1029/2018GC008176.

Bond, G. C., and M. A. Kominz (1988), Evolution of thought on passive continental margins from the origin of geosynclinal theory (∼1860) to the present, GSA Bulletin, 100(12), 1909–1933, doi: 10.1130/0016-7606(1988)100<1909:EOTOPC>2.3.CO;2.

Braun, J., and S. D. Willett (2013), A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180-181, 170–179, doi: 10.1016/j.geomorph.2012.10.008.

Bulkan, S., P. Henry, P. Vannucchi, F. Storti, C. Cavozzi, and J. P. Morgan (2020), The evolution of restraining and releasing bend pairs: analogue modelling investigation and application to the Sea of Marmara, preprint, Geology, doi: 10.1002/essoar.10502140.1.

Calvo, R., and J. Bartov (2001), Hazeva Group, southern Israel: New observations, and their implications for its stratigraphy, paleogeography, and tectono-sedimentary regime., Isr. J. Earth Sci., 50(2-4), 71–99.

Chaldekas, O., A. Vaks, I. Haviv, A. Gerdes, and R. Albert (2021), U-Pb speleothem geochronology reveals a major 6 Ma uplift phase along the western margin of Dead Sea Transform, GSA Bulletin, 134(5-6), 1571–1584, doi: 10.1130/B36051.1.

Clift, P. D. (2015), Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea, Geoscience Letters, 2(1), 13, doi: 10.1186/s40562-015-0029-9.

Clift, P. D., S. Brune, and J. Quinteros (2015), Climate changes control offshore crustal structure at South China Sea continental margin, Earth and Planetary Science Letters, 420, 66–72, doi: 10.1016/j.epsl.2015.03.032.

Cochran, W. J., J. A. Spotila, P. S. Prince, and R. J. McAleer (2017), Rapid exhumation of Cretaceous arc-rocks along the Blue Mountains restraining bend of the Enriquillo-Plantain Garden fault, Jamaica, using thermochronometry from multiple closure systems, Tectonophysics, 721, 292–309, doi: 10.1016/j.tecto.2017.09.021.

Cowgill, E., A. Yin, J. R. Arrowsmith, W. X. Feng, and Z. Shuanhong (2004), The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults, GSA Bulletin, 116(11-12), 1423–1442, doi: 10.1130/B25359.1.

Crowell, J. C. (1974), Origin of Late Cenozoic Basins in Southern California (Abstract-AAPG Bulletin, 1973, p. 774; article-SEPM Special Publication No. 22, 194, p. 190-204), Tectonics and Sedimention, pp. 190–204.

Dembo, N., R. Granot, and Y. Hamiel (2021), Mechanical contrast and asymmetric distribution of crustal deformation across plate boundaries: Insights from the northern Dead Sea fault system, Geology, 49(5), 498–503, doi: 10.1130/G48342.1.

DESERT Group, M. Weber, K. Abu-Ayyash, A. Abueladas, A. Agnon, H. Al-Amoush, A. Babeyko, Y. Bartov, M. Baumann, Z. Ben-Avraham, G. Bock, J. Bribach, R. El-Kelani, A. Förster, H.-J. Förster, U. Frieslander, Z. Garfunkel, S. Grunewald, H. J. Götze, V. Haak, -H. Jäckel, D. Kesten, R. Kind, N. Maercklin, J. Mechie, A. Mohsen, F. M. Neubauer, R. Oberhänsli, I. Qabbani, O. Ritter, G. Rümpker, M. Rybakov, T. Ryberg, F. Scherbaum, J. Schmidt, A. Schulze, S. Sobolev, M. Stiller, H. Thoss, U. Weckmann, and K. Wylegalla (2004), The crustal structure of the Dead Sea Transform, Geophysical Journal International, 156(3), 655–681, doi: 10.1111/j.1365-246X.2004.02143.x.

Dooley, T., and K. McClay (1997), Analog Modeling of Pull-Apart Basins, AAPG Bulletin, 81(11), 1804–1826, doi: 10.1306/3B05C636-172A-11D7-8645000102C1865D.

Dubertret, L. (1932), Les formes structurales de la Syrie et de la Palestine, Comptes Rendus de l’Académie des Sciences, 195, 66–68.

Ekström, G., M. Nettles, and A. M. Dziewonski (2012), The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., pp. 1–9, doi: 10.1016/j.pepi.2012.04.002.

Elias, A., P. Tapponnier, S. C. Singh, G. C. King, A. Briais, M. Daëron, H. Carton, A. Sursock, E. Jacques, R. Jomaa, and Y. Klinger (2007), Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake, Geology, 35(8), 755–758, doi: 10.1130/G23631A.1.

Fedorik, J., F. E. Maesano, and A. M. Afifi (2022), A validated geomechanical model for the strike-slip restraining bend in lebanon, Scientific Reports, 12(1), 20,071, doi: 10.1038/s41598-022-24718-0.

Fraters, M. R. T., W. Bangerth, C. Thieulot, A. C. Glerum, and W. Spakman (2019), Efficient and practical Newton solvers for non-linear Stokes systems in geodynamic problems, Geophysical Journal International, 218(2), 873–894, doi: 10.1093/gji/ggz183.

Förster, H. J., A. Förster, R. Oberhänsli, and D. Stromeyer (2010), Lithospheric composition and thermal structure of the Arabian Shield in Jordan, Tectonophysics, 481(1), 29–37, doi: 10.1016/j.tecto.2008.11.014.

Garfunkel, Z. (1981), Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics, Tectonophysics, 80(1), 81–108, doi: 10.1016/0040-1951(81)90143-8.

Garfunkel, Z., and Z. Ben-Avraham (1996), The structure of the Dead Sea basin, Tectonophysics, 266(1), 155–176, doi: 10.1016/S0040-1951(96)00188-6.

Garfunkel, Z., and Z. Ben-Avraham (2001), Basins along the Dead Sea Transform, Basins along the Dead Sea Transform, 186, 607–627.

Gasperini, L., M. Lazar, A. Mazzini, M. Lupi, A. Haddad, C. Hensen, M. Schmidt, A. Caracausi, M. Ligi, and A. Polonia (2020), Neotectonics of the Sea of Galilee (northeast Israel): implication for geodynamics and seismicity along the Dead Sea Fault system, Scientific Reports, 10(1), 11,932, doi: 10.1038/s41598-020-67930-6.

Gassmöller, R., H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth (2018), Flexible and Scalable Particle-in-Cell Methods With Adaptive Mesh Refinement for Geodynamic Computations, Geochemistry, Geophysics, Geosystems, 19(9), 3596–3604, doi: 10.1029/2018GC007508.

Gilbert, G. K., R. Humphrey, J. Sewell, and F. Soule (1907), The earthquake as a natural phenomenon, The San Francisco Earthquake and Fire, US Geol. Surv. Bull, 324, 1–13.

Glerum, A., C. Thieulot, M. Fraters, C. Blom, and W. Spakman (2018), Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9(2), 267–294, doi: 10.5194/se-9-267-2018.

Gomez, F., T. Nemer, C. Tabet, M. Khawlie, M. Meghraoui, and M. Barazangi (2007), Strain partitioning of active transpression within the Lebanese restraining bend of the Dead Sea Fault (Lebanon and SW Syria), Geological Society, London, Special Publications, 290(1), 285–303, doi: 10.1144/290.10.

Goren, L., S. Castelltort, and Y. Klinger (2015), Modes and rates of horizontal deformation from rotated river basins: Application to the Dead Sea fault system in Lebanon, Geology, 43(9), 843–846, doi: 10.1130/G36841.1.

Götze, H.-J., R. El-Kelani, S. Schmidt, M. Rybakov, M. Hassouneh, H.-J. Förster, and J. Ebbing (2007), Integrated 3D density modelling and segmentation of the Dead Sea Transform, International Journal of Earth Sciences, 96(2), 289–302, doi: 10.1007/s00531-006-0095-5.

Hamiel, Y., and O. Piatibratova (2019), Style and Distribution of Slip at the Margin of a Pull-Apart Structure: Geodetic Investigation of the Southern Dead Sea Basin, Journal of Geophysical Research: Solid Earth, 124(11), 12,023–12,033, doi: 10.1029/2019JB018456.

Hamiel, Y., and O. Piatibratova (2021), Spatial Variations of Slip and Creep Rates Along the Southern and Central Dead Sea Fault and the Carmel–Gilboa Fault System, Journal of Geophysical Research: Solid Earth, 126(9), e2020JB021,585, doi: 10.1029/2020JB021585.

Hamiel, Y., R. Amit, Z. B. Begin, S. Marco, O. Katz, A. Salamon, E. Zilberman, and N. Porat (2009), The Seismicity along the Dead Sea Fault during the Last 60,000 Years, Bulletin of the Seismological Society of America, 99(3), 2020–2026, doi: 10.1785/0120080218.

Heckenbach, E. (2023), Strike slip modeling - Dead-Sea: Heckenbach et al, doi: 10.5281/zenodo.10405077.

Heimann, A., G. Steinitz, D. Mor, and G. Shaliv (1996), The Cover Basalt Formation, its age and its regional and tectonic setting: Implications from K-Ar and 40Ar/39Ar geochronology, Isr. J. Earth Sci, 45(5).

Heister, T., J. Dannberg, R. Gassmöller, and W. Bangerth (2017), High Accuracy Mantle Convection Simulation through Modern Numerical Methods. II: Realistic Models and Problems, Geophysical Journal International, 210(2), 833–851, doi: 10.1093/gji/ggx195.

Herbert, J. W., M. L. Cooke, M. Oskin, and O. Difo (2014), How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone?, Geology, 42(1), 71–75, doi: 10.1130/G34738.1.

Joffe, S., and Z. Garfunkel (1987), Plate kinematics of the circum Red Sea—a re-evaluation, Tectonophysics, 141(1), 5–22, doi: 10.1016/0040-1951(87)90171-5.

Ketin, I. (1948), Über die tektonisch-mechanischen folgerungen aus den grossen anatolischen erdbeben des letzten dezenniums, Geologische Rundschau, 36(1), 77–83.

Kronbichler, M., T. Heister, and W. Bangerth (2012), High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophysical Journal International, 191, 12–29, doi: 10.1111/j.1365-246X.2012.05609.x.

Lateef, A. S. A. (2007), Geological history of the bekaa valley, in Second International Conference on the Geology of the Tethys, pp. 391–402.

Lawson, A. C. (1895), Sketch of the geology of the San Francisco Peninsula, US Government Printing Office.

Le Beon, M., Y. Klinger, A. Q. Amrat, A. Agnon, L. Dorbath, G. Baer, J.-C. Ruegg, O. Charade, and O. Mayyas (2008), Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform, Journal of Geophysical Research: Solid Earth, 113(B11), doi: 10.1029/2007JB005280.

Lubberts, R. K., and Z. Ben-Avraham (2002), Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin, Tectonophysics, 346(1), 91–113, doi: 10.1016/S0040-1951(01)00230-X.

Mahattanachai, T., C. K. Morley, P. Charusiri, and P. Kanjanapayont (2021), The Andaman Basin Central Fault Zone, Andaman Sea: Characteristics of a major deepwater strike-slip fault system in a polyphase rift, Marine and Petroleum Geology, 128, 104,997, doi: 10.1016/j.marpetgeo.2021.104997.

Mann, P. (2007), Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems, Geological Society, London, Special Publications, 290, 13–142, doi: 10.1144/SP290.2.

Mann, P., C. Demets, and M. Wiggins-Grandison (2007), Toward a better understanding of the Late Neogene strike-slip restraining bend in Jamaica: geodetic, geological, and seismic constraints, Geological Society, London, Special Publications, 290(1), 239–253, doi: 10.1144/SP290.8.

Marco, S. (2007), Temporal variation in the geometry of a strike–slip fault zone: Examples from the Dead Sea Transform, Tectonophysics, 445(3), 186–199, doi: 10.1016/j.tecto.2007.08.014.

Mohsen, A., G. Asch, J. Mechie, R. Kind, R. Hofstetter, M. Weber, M. Stiller, and K. Abu-Ayyash (2011), Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis, Geophysical Journal International, 184(1), 463–476, doi: 10.1111/j.1365-246X.2010.04853.x.

Morley, C. K., and R. Westaway (2006), Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: a coupled model incorporating lower-crustal flow in response to post-rift sediment loading, Basin Research, 18(1), 51–84, doi: 10.1111/j.1365-2117.2006.00285.x.

Nemer, T. S., and M. Meghraoui (2020), A non-active fault within an active restraining bend: The case of the Hasbaya fault, Lebanon, Journal of Structural Geology, 136, 104,060, doi: 10.1016/j.jsg.2020.104060.

Neuharth, D., S. Brune, A. Glerum, C. Heine, and J. K. Welford (2021), Formation of Continental Microplates Through Rift Linkage: Numerical Modeling and Its Application to the Flemish Cap and Sao Paulo Plateau, Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009,615, doi: 10.1029/2020GC009615.

Neuharth, D., S. Brune, A. Glerum, C. K. Morley, X. Yuan, and J. Braun (2022a), Flexural strike-slip basins, Geology, 50(3), 361–365, doi: 10.1130/G49351.1.

Neuharth, D., S. Brune, T. Wrona, A. Glerum, J. Braun, and X. Yuan (2022b), Evolution of Rift Systems and Their Fault Networks in Response to Surface Processes, Tectonics, 41(3), e2021TC007,166, doi: 10.1029/2021TC007166.

Norris, R. J., and V. G. Toy (2014), Continental transforms: A view from the Alpine Fault, Journal of Structural Geology, 64, 3–31, doi: 10.1016/j.jsg.2014.03.003.

Olive, J.-A., M. D. Behn, and L. C. Malatesta (2014), Modes of extensional faulting controlled by surface processes, Geophysical Research Letters, 41(19), 6725–6733, doi: 10.1002/2014GL061507.

Olive, J.-A., M. D. Behn, E. Mittelstaedt, G. Ito, and B. Z. Klein (2016), The role of elasticity in simulating long-term tectonic extension, Geophysical Journal International, 205(2), 728–743, doi: 10.1093/gji/ggw044.

Oren, O., P. Nuriel, A. R. C. Kylander-Clark, and I. Haviv (2020), Evolution and Propagation of an Active Plate Boundary: U-Pb Ages of Fault-Related Calcite From the Dead Sea Transform, Tectonics, 39(8), e2019TC005,888, doi: 10.1029/2019TC005888.

Oryan, B., and H. Savage (2021), Regional Heat Flow Analysis Reveals Frictionally Weak Dead Sea Fault, Geochemistry, Geophysics, Geosystems, 22(12), e2021GC010,115, doi: 10.1029/2021GC010115.

Oryan, B., H. Villinger, M. Lazar, M. J. Schwab, I. Neugebauer, and Z. Ben-Avraham (2019), Heat flow in the Dead Sea from the ICDP boreholes and its implication for the structure of the basin, Quaternary Science Reviews, 210, 103–112, doi: 10.1016/j.quascirev.2019.02.016.

Petrunin, A., and S. V. Sobolev (2006), What controls thickness of sediments and lithospheric deformation at a pull-apart basin?, Geology, 34(5), 389, doi: 10.1130/G22158.1.

Petrunin, A. G., E. Meneses Rioseco, S. V. Sobolev, and M. Weber (2012), Thermomechanical model reconciles contradictory geophysical observations at the Dead Sea Basin, Geochemistry, Geophysics, Geosystems, 13(4), doi: 10.1029/2011GC003929.

Quennell, A. M. (1959), Tectonics of the dead sea rift, in Proceedings of the 20th international geological congress, Mexico, pp. 385–403.

Rayleigh, L. (1916), Lix. on convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(192), 529–546.

Reilinger, R., and S. McClusky (2011), Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics: Mediterranean and Middle East geodynamics, Geophysical Journal International, 186(3), 971–979, doi: 10.1111/j.1365-246X.2011.05133.x.

Reznik, I. J., and Y. Bartov (2021), Present Heat Flow and Paleo-Geothermal Anomalies in the Southern Golan Heights, Israel, Earth and Space Science, 8(3), e2020EA001,299, doi: 10.1029/2020EA001299.

Richter, M. J. E. A., S. Brune, S. Riedl, A. Glerum, D. Neuharth, and M. R. Strecker (2021), Controls on Asymmetric Rift Dynamics: Numerical Modeling of Strain Localization and Fault Evolution in the Kenya Rift, Tectonics, 40(5), e2020TC006,553, doi: 10.1029/2020TC006553.

Rose, I., B. Buffett, and T. Heister (2017), Stability and accuracy of free surface time integration in viscous flows, Physics of the Earth and Planetary Interiors, 262, 90 – 100, doi: 10.1016/j.pepi.2016.11.007.

Royden, L. (1996), Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, Journal of Geophysical Research: Solid Earth, 101(B8), 17,679–17,705, doi: 10.1029/96JB00951.

Royden, L. H., B. C. Burchfiel, R. W. King, E. Wang, Z. Chen, F. Shen, and Y. Liu (1997), Surface Deformation and Lower Crustal Flow in Eastern Tibet, Science, 276(5313), 788–790, doi: 10.1126/science.276.5313.788.

Ryan, W. B. F., S. M. Carbotte, J. O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009), Global Multi-Resolution Topography synthesis, Geochemistry, Geophysics, Geosystems, 10(3), doi: 10.1029/2008GC002332.

Schütz, F., H. J. Förster, and A. Förster (2014), Thermal conditions of the central Sinai Microplate inferred from new surface heat-flow values and continuous borehole temperature logging in central and southern Israel, Journal of Geodynamics, 76, 8–24, doi: 10.1016/j.jog.2014.02.010.

Seymen, İ., and A. Aydin (2023), The bingöl earthquake fault and its relation to the north anatolian fault zone, Bulletin of the Mineral Research and Exploration, 1972(79), 1.

Shalev, E., V. Lyakhovsky, Y. Weinstein, and Z. Ben-Avraham (2013), The thermal structure of Israel and the Dead Sea Fault, Tectonophysics, 602, 69–77, doi: 10.1016/j.tecto.2012.09.011.

Smit, J., J.-P. Brun, S. Cloetingh, and Z. Ben-Avraham (2008), Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin, Tectonics, 27(6), doi: 10.1029/2007TC002119.

Smit, J., J. P. Brun, S. Cloetingh, and Z. Ben-Avraham (2010), The rift-like structure and asymmetry of the Dead Sea Fault, Earth and Planetary Science Letters, 290(1), 74–82, doi: 10.1016/j.epsl.2009.11.060.

Sobolev, S., A. Petrunin, Z. Garfunkel, and A. Babeyko (2005), Thermo-mechanical model of the Dead Sea Transform, Earth and Planetary Science Letters, 238(1-2), 78–95, doi: 10.1016/j.epsl.2005.06.058.

Steinitz, G., and Y. Bartov (1992), The Miocene-Pleistocene history of the Dead Sea segment of the Rift in light of K-Ar ages of basalts, Israel Journal of Earth-Sciences, 38(2-4), 199–208.

Stock, J. D., and D. R. Montgomery (1999), Geologic constraints on bedrock river incision using the stream power law, Journal of Geophysical Research: Solid Earth, 104(B3), 4983–4993, doi: 10.1029/98JB02139.

Styron, R. (2019), GEMScienceTools/gem-global-active-faults: First release of 2019, doi: 10.5281/zenodo.3376300.

Sugan, M. (2014), 3D Analogue Modelling of Transtensional Pull-apart Basins: comparison with the Cinarcik Basin, Sea of Marmara, Turkey, BGTA, doi: 10.4430/bgta0129.

Tapponnier, P., and P. Molnar (1977), Active faulting and tectonics in China, Journal of Geophysical Research, 82(20), 2905–2930, doi: 10.1029/JB082i020p02905.

ten Brink, U. S., and Z. Ben-Avraham (1989), The anatomy of a pull-apart basin: Seismic reflection observations of the Dead Sea Basin, Tectonics, 8(2), 333–350, doi: 10.1029/TC008i002p00333.

Ten Brink, U. S., Z. Ben-Avraham, R. E. Bell, M. Hassouneh, D. F. Coleman, G. Andreasen, G. Tibor, and B. Coakley (1993), Structure of the Dead Sea pull-apart basin from gravity analyses, Journal of Geophysical Research: Solid Earth, 98(B12), 21,877–21,894, doi: 10.1029/93JB02025.

van Wijk, J., G. Axen, and R. Abera (2017), Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California, Tectonophysics, 719-720, 37–50, doi: 10.1016/j.tecto.2017.04.019.

van Wijk, J. W., S. P. Heyman, G. J. Axen, and P. Persaud (2019), Nature of the crust in the northern Gulf of California and Salton Trough, Geosphere, 15(5), 1598–1616, doi: 10.1130/GES02082.1.

van Zelst, I., F. Crameri, A. E. Pusok, A. Glerum, J. Dannberg, and C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13(3), 583–637, doi: 10.5194/se-13-583-2022.

Wdowinski, S., and E. Zilberman (1996), Kinematic modelling of large-scale structural asymmetry across the Dead Sea Rift, Tectonophysics, 266(1), 187–201, doi: 10.1016/S0040-1951(96)00238-7.

Wellman, H. (1952), The Alpine Fault in detail: river terrace displacement at Maruia River, New Zealand Journal of Science and Technology B, 33, 409–414.

Wetzler, N., and I. Kurzon (2016), The Earthquake Activity of Israel: Revisiting 30 Years of Local and Regional Seismic Records along the Dead Sea Transform, Seismological Research Letters, 87(1), 47–58, doi: 10.1785/0220150157.

Wiggins-Grandison, M. D., and K. Atakan (2005), Seismotectonics of Jamaica, Geophysical Journal International, 160(2), 573–580, doi: 10.1111/j.1365-246X.2004.02471.x.

Willett, S. D. (1999), Orogeny and orography: The effects of erosion on the structure of mountain belts, Journal of Geophysical Research: Solid Earth, 104(B12), 28,957–28,981, doi: 10.1029/1999JB900248.

Wolf, S. G., R. S. Huismans, J.-A. Muñoz, M. E. Curry, and P. van der Beek (2021), Growth of Collisional Orogens From Small and Cold to Large and Hot—Inferences From Geodynamic Models, Journal of Geophysical Research: Solid Earth, 126(2), e2020JB021,168, doi: 10.1029/2020JB021168.

Wu, J. E., K. McClay, P. Whitehouse, and T. Dooley (2009), 4D analogue modelling of transtensional pull-apart basins, Marine and Petroleum Geology, 26(8), 1608–1623, doi: 10.1016/j.marpetgeo.2008.06.007.

Yuan, X. P., J. Braun, L. Guerit, D. Rouby, and G. Cordonnier (2019a), A New Efficient Method to Solve the Stream Power Law Model Taking Into Account Sediment Deposition, Journal of Geophysical Research: Earth Surface, 124(6), 1346–1365, doi: 10.1029/2018JF004867.

Yuan, X. P., J. Braun, L. Guerit, B. Simon, B. Bovy, D. Rouby, C. Robin, and R. Jiao (2019b), Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis, Earth and Planetary Science Letters, 524, 115,728, doi: 10.1016/j.epsl.2019.115728.

Zilberman, E., and R. Calvo (2013), Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian plate, Journal of African Earth Sciences, 82, 33–53, doi: 10.1016/j.jafrearsci.2013.02.006.

Zoback, M. L. (1992), First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, Journal of Geophysical Research: Solid Earth, 97(B8), 11,703–11,728, doi: 10.1029/92JB00132.

Zwaan, F., G. Schreurs, and J. Adam (2018), Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques, Global and Planetary Change, 171, 110–133, doi: 10.1016/j.gloplacha.2017.11.002.