Crustal to Microscale Strain Partitioning during Transpression and Control on Ore Formation: Insights from the Paleoproterozoic Séguéla Shear Zone, Southern West African Craton
Main Article Content
Abstract
Crustal-scale transpressional shear zones provide critical insights into regional tectonics during oblique convergence and frequently host significant ore deposits. However, deciphering their evolution remains challenging due to complex interactions between orientation relative to the finite shortening, structural inheritance and strain partitioning, that influence their localisation, geometry, and kinematics. Following an integrated field-to-laboratory approach, this study investigates the record of transpressional tectonics and controls on mineralisation in the gold-endowed, north-striking Séguéla shear zone located in north-western Côte d’Ivoire, within the Paleoproterozoic Baoulé-Mossi domain, southern West African craton. The Séguéla shear zone evolved during a progressive D1Seg-D2Seg deformation phase associated with northwest-trending oblique convergence. D1Seg likely records the Eburnean Tectonic Event (ca. 2135 to 2020-2095 Ma) culminating in craton assembly, whereas the main D2Seg stage reflects late Eburnean (ca. 2095-2060 Ma) transcurrent tectonics. D1Seg eastward-directed thrusting remnants persist in low-strain domains but were overprinted by high-strain, first-order north-striking shears and second-order northeast-striking structures formed during pure shear-dominated D2Seg transpression. Pre-existing northeast-striking fabrics likely facilitated strain localisation, although their timing and exact role in the docking of the craton remain uncertain. Quartz microtextures indicate elevated strain intensity and/or longer-lived deformation within mineralised veins formed along first-order shear structures, contrasting with transient, possibly weaker deformation and enhanced thermal or strain relaxation recorded in second-order structures. Finally, strain partitioning across the Séguéla shear zone controls the distribution, tonnage and grade of gold deposits along first- and second-order structures, as well as ore-shoot orientation. This case study therefore highlights how integrating multiscale evidence unravels strain partitioning in transpressional systems, improving our understanding of deformation processes and their control on mineralisation.
Article Details
References
Allialy, M. E., B. R. Kouassi, N. N. Houssou, F. J. L. Kouadio, D. B. Siogbo, and F. O. Konan (2023), Fouimba and Goma mounts Greenstone belts litho-structural analysis related to Côte D’Ivoire birimian geodynamic setting and implying in west-Africa craton gold deposits, Journal of Geoscience and Environment Protection, 11(01), 150–168, https://doi.org/10.4236/gep.2023.111010.
Amoih, L. Y. K. (2022), Etude lithostratigraphique et géochimique du projet aurifère de Séguéla, Master’s thesis, Université Félix Houphouet-Boigny, Abidjan, Côte d’Ivoire.
Anderson, E. M. (1905), The dynamics of faulting, Transactions of the Edinburgh Geological Society, 8(3), 387–402, https://doi.org/10.1144/transed.8.3.387.
Bachmann, F., R. Hielscher, and H. Schaeben (2010), Texture analysis with MTEX – free and open source software toolbox, Solid State Phenomena, 160, 63–68, https://doi.org/10.4028/www.scientific.net/ssp.160.63.
Bachmann, F., R. Hielscher, and H. Schaeben (2011), Grain detection from 2d and 3d EBSD data–specification of the MTEX algorithm, Ultramicroscopy, 111(12), 1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002.
Baratoux, L., V. Metelka, S. Naba, M. W. Jessell, M. Grégoire, and J. Ganne (2011), Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼2.2–2.0 Ga), western Burkina Faso, Precambrian Research, 191(1-2), 18–45, https://doi.org/10.1016/j.precamres.2011.08.010.
Baratoux, L., M. W. Jessell, and A. N. Kouamelan (2024), The west African craton, in Regional Geology Reviews, edited by Z. Hamimi, M. C. Chabou, E. Errami, A.-R. Fowler, N. Fello, A. Masrouhi, and R. Leprêtre, pp. 47–68, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-031-48299-1_3.
Bateman, R., and F. P. Bierlein (2007), On Kalgoorlie (Australia), Timmins–Porcupine (Canada), and factors in intense gold mineralisation, Ore Geology Reviews, 32(1-2), 187–206, https://doi.org/10.1016/j.oregeorev.2006.08.001.
Beach, A. (1977), Vein arrays, hydraulic fractures and pressure-solution structures in a deformed flysch sequence S.W. England, Tectonophysics, 40(3-4), 201–225, https://doi.org/10.1016/0040-1951(77)90066-x.
Bessoles, B. (1977), Géologie de l’Afrique: le craton ouest africain, Mémoires du Bureau de Recherches Geologiques et Minières, vol. 88, BRGM.
Blenkinsop, T. G., N. H. S. Oliver, P. G. H. M. Dirks, M. Nugus, G. Tripp, and I. Sanislav (2020), Chapter 1: Structural geology applied to the evaluation of hydrothermal gold deposits, in APPLIED STRUCTURAL GEOLOGY OF ORE-FORMING HYDROTHERMAL SYSTEMS, edited by J. V. Rowland and D. A. Rhys, pp. 1–23, Society of Economic Geologists, https://doi.org/10.5382/rev.21.01.
Boher, M., W. Abouchami, A. Michard, F. Albarède, and N. Arndt (1992), Crustal growth in west Africa at 2.1 Ga, Journal of Geophysical Research, Solid Earth, 97 (B1), 345–369, https://doi.org/10.1029/91JB01640.
Bonhomme, M. (1962), Contribution à l’étude géochronologique de la plate-forme de l’Ouest Africain, Imprimerie Louis-Jean.
Bons, P. (2000), The formation of veins and their microstructures, Journal of the Virtual Explorer, 02, 12, https://doi.org/10.3809/JVIRTEX.2000.00007.
Bons, P. D., and M. W. Jessell (1997), Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep, Mineralogical Magazine, 61(404), 53–63, https://doi.org/10.1180/minmag.1997.061.404.06.
Bons, P. D., M. A. Elburg, and E. Gomez-Rivas (2012), A review of the formation of tectonic veins and their microstructures, Journal of Structural Geology, 43, 33–62, https://doi.org/10.1016/j.jsg.2012.07.005.
Bons, P. D., D. Cao, T. de Riese, E. González-Esvertit, D. Koehn, I. Naaman, T. Sachau, H. Tian, and E. Gomez-Rivas (2022), A review of natural hydrofractures in rocks, Geological Magazine, pp. 1–26, https://doi.org/10.1017/s0016756822001042.
Brochard, C. (2022), Paléo-contraintes et origine des fluides des veines orogéniques de la ceinture de roches vertes de l’Abitibi, Master’s thesis, Université du Québec à Montréal, Montreal, Canada.
Brochard, C., M. Jébrak, and S. De Souza (2023), Deformation and paleopiezometry of auriferous quartz veins in Archean orogenic gold deposits of the Abitibi greenstone belt, Journal of Structural Geology, 177 (104986), 104,986, https://doi.org/10.1016/j.jsg.2023.104986.
Bürgmann, R., and D. D. Pollard (1992), Influence of the state of stress on the brittle-ductile transition in granitic rock: Evidence from fault steps in the Sierra Nevada, California, Geology, 20(7), 645, https://doi.org/10.1130/0091-7613(1992)020<0645:IOTSOS>2.3.CO;2.
Bürgmann, R., and D. D. Pollard (1994), Strain accommodation about strike-slip fault discontinuities in granitic rock under brittle-to-ductile conditions, Journal of Structural Geology, 16(12), 1655–1674, https://doi.org/10.1016/0191-8141(94)90133-3.
Caby, R., C. Delor, and O. Agoh (2000), Lithologie, structure et métamorphisme des formations birimiennes dans la région d’Odienné (Côte d’Ivoire): rôle majeur du diapirisme des plutons et des décrochements en bordure du craton de Man, Journal of African Earth Sciences, 30(2), 351–374, https://doi.org/10.1016/S0899-5362(00)00024-5.
Cawood, T. K., and J. P. Platt (2021), What controls the width of ductile shear zones?, Tectonophysics, 816(229033), 229,033, https://doi.org/10.1016/j.tecto.2021.229033.
Cerchiari, A., F. Remitti, S. Mittempergher, A. Festa, F. Lugli, and A. Cipriani (2020), Cyclical variations of fluid sources and stress state in a shallow megathrust-zone mélange, Journal of the Geological Society, 177 (3), 647–659, https://doi.org/10.1144/jgs2019-072.
Chamlagain, D., and D. Hayashi (2007), Finite strain variation across the Mahabharat Thrust in central Nepal Himalaya, Journal of Nepal Geological Society, 35, 11–20, https://doi.org/10.3126/jngs.v35i0.23630.
Chardon, D., O. Bamba, and K. Traoré (2020), Eburnean deformation pattern of Burkina Faso and the tectonic significance of shear zones in the West African craton, Bulletin de la Societe Geologique de France, 191(1), 2, https://doi.org/10.1051/bsgf/2020001.
Chen, S. (2001), Transpression and restraining jogs in the northeastern Yilgarn craton, Western Australia, Precambrian Research, 106(3-4), 309–328, https://doi.org/10.1016/s0301-9268(00)00138-8.
Choulet, F., M. Faure, D. Cluzel, Y. Chen, W. Lin, and B. Wang (2012), From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China, Gondwana Research, 21(2-3), 530–547, https://doi.org/10.1016/j.gr.2011.07.015.
Cox, S. (2005), Coupling between Deformation, Fluid Pressures, and Fluid Flow in Ore-Producing Hydrothermal Systems at Depth in the Crust, Economic Geology; Bulletin of the Society of Economic Geologists, 100, 39–75.
Cox, S., V. Wall, M. Etheridge, and T. F. Potter (1991), Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits — examples from the Lachlan Fold Belt in central Victoria, Australia, Ore Geology Reviews, 6(5), 391–423, https://doi.org/10.1016/0169-1368(91)90038-9.
Cox, S., M. Knackstedt, and J. Braun (2001), Principles of structural control on permeability and fluid flow in hydrothermal systems, in Structural Controls on Ore Genesis, Reviews in Economic Geology, vol. 14, edited by J. P. Richards and R. M. Tosdal, pp. 1–22, Society of Economic Geologists, https://doi.org/10.5382/rev.14.01.
Cox, S. F. (2010), The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones, Geofluids, 10(1-2), 217–233, https://doi.org/10.1111/j.1468-8123.2010.00281.x.
Cox, S. F. (2020), Chapter 2: The Dynamics of Permeability Enhancement and Fluid Flow in Overpressured, Fracture-Controlled Hydrothermal Systems, in APPLIED STRUCTURAL GEOLOGY OF ORE-FORMING HYDROTHERMAL SYSTEMS, Society of Economic Geologists, https://doi.org/10.5382/rev.21.02.
Cox, S. F., and K. Ruming (2004), The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks?, Journal of Structural Geology, 26(6-7), 1109–1125, https://doi.org/10.1016/j.jsg.2003.11.025.
Criddle, P., H. Andersen, P. Weedon, D. Morgan, G. Bailey, S. McLeay, and N. Morrison (2021), Séguéla Project, Feasibility Study, Worodougou Region, Côte d’Ivoire, Tech. rep., RoxGold.
Cross, A., S. Kidder, and D. Prior (2015), Using microstructures and TitaniQ thermobarometry of quartz sheared around garnet porphyroclasts to evaluate microstructural evolution and constrain an Alpine Fault Zone geotherm, Journal of Structural Geology, 75, 17–31, https://doi.org/10.1016/J.JSG.2015.02.012.
Cross, A. J., D. J. Prior, M. Stipp, and S. Kidder (2017), The recrystallized grain size piezometer for quartz: An EBSD-based calibration, Geophysical Research Letters, 44(13), 6667–6674, https://doi.org/10.1002/2017gl073836.
Cunningham, W. D., and P. Mann (2007), Tectonics of strike-slip restraining and releasing bends, Geological Society Special Publication, 290(1), 1–12, https://doi.org/10.1144/SP290.1.
del Real, I., R. W. Allmendinger, J. F. H. Thompson, and C. Creixell (2023), Evidence for transpression during formation of the Candelaria Punta del Cobre IOCG-district and regional implications, Journal of South American Earth Sciences, 126(104289), 104,289, https://doi.org/10.1016/j.jsames.2023.104289.
Destro, N., P. Szatmari, and E. A. Ladeira (1994), Post-Devonian transpressional reactivation of a Proterozoic ductile shear zone in Ceará, NE Brazil, Journal of Structural Geology, 16(1), 35–45, https://doi.org/10.1016/0191-8141(94)90016-7.
Dewey, J. F., R. E. Holdsworth, and R. A. Strachan (1998), Transpression and transtension zones, Geological Society Special Publication, 135(1), 1–14, https://doi.org/10.1144/GSL.SP.1998.135.01.01.
Diraison, M., P. R. Cobbold, E. A. Rossello, and A. J. Amos (1998), Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina, Journal of South American Earth Sciences, 11(6), 519–532, https://doi.org/10.1016/s0895-9811(98)00032-7.
Drury, M., and J. Urai (1990), Deformation-related recrystallization processes, Tectonophysics, 172(3-4), 235–253, https://doi.org/10.1016/0040-1951(90)90033-5.
Dubé, B., and P. Gosselin (2007), Greenstone-hosted quartz-carbonate vein deposits, in Geological Association of Canada, Mineral Deposits Division, Special Publication, Special Publication, geological association of canada, mineral deposits division ed., pp. 49–73, Goodfellow W.D.
Egal, E., D. Thiéblemont, D. Lahondère, C. Guerrot, C. A. Costea, D. Iliescu, C. Delor, J.-C. Goujou, J. Lafon, M. Tegyey, S. Diaby, and P. Kolié (2002), Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kenema-Man domain (Guinea, West African Craton), Precambrian Research, 117 (1-2), 57–84, https://doi.org/10.1016/S0301-9268(02)00060-8.
Eglinger, A., N. Thébaud, A. Zeh, J. Davis, J. Miller, L. A. Parra-Avila, R. Loucks, C. McCuaig, and E. Belousova (2017), New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system, Precambrian Research, 292, 258–289, https://doi.org/10.1016/j.precamres.2016.11.012.
El-Wahed, M., H. Harraz, and M. El-Behairy (2016), Transpressional imbricate thrust zones controlling gold mineralization in the Central Eastern Desert of Egypt, Ore Geology Reviews, 78, 424–446, https://doi.org/10.1016/J.OREGEOREV.2016.03.022.
Ephrem, A. M., H. N. Nestor, K. F. J. Luc, D. B. Siogbo, K. B. Roland, and K. H. Felix (2023), Litho-structural and geochemistry analysis of granitoids from mount fouimba and Goma in seguela area (central-western Côte d’Ivoire), Open Journal of Geology, 13(01), 72–89, https://doi.org/10.4236/ojg.2023.131004.
Etheridge, M. (1983), Differential stress magnitudes during regional deformation and metamorphism: Upper bound imposed by tensile fracturing, Geology, 11(4), 231–234, https://doi.org/10.1130/0091-7613(1983)11<231:DSMDRD>2.0.CO;2.
Evans, B., J. Renner, and G. Hirth (2001), A few remarks on the kinetics of static grain growth in rocks, International Journal of Earth Sciences, 90, 88–103, https://doi.org/10.1007/S005310000150.
Feybesse, J., and J. Milési (1994), The Archaean/Proterozoic contact zone in West Africa: a mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons?, Precambrian Research, 69(1-4), 199–227, https://doi.org/10.1016/0301-9268(94)90087-6.
Feybesse, J., J. Milési, V. Johan, A. Dommanget, J.-Y. Calvez, M. Boher, and W. Abauchami (1989), La limite Archéen/Protérozoïque inférieur d’Afrique de l’Ouest: une zone de chevauchement majeure antérieure à l’accident de Sassandra; l’exemple des régions d’Odiénné et de Touba (Côte-d’Ivoire), Comptes Rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 309(18), 1847–1853.
Feybesse, J., J. Milési, P. Verhaeghe, and V. Johan (1990), Le domaine de Toulepleu-Ity (Côte-d’Ivoire); une unité «birrimienne» charriée sur les gneiss archéens du domaine de Kénéma-Man lors des premiers stades de l’orogène éburnéen, Comptes Rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 310(3), 285–291.
Feybesse, J., M. Billa, C. Guerrot, E. Duguey, J. Lescuyer, J. Milési, and V. Bouchot (2006), The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling, Precambrian Research, 149(3-4), 149–196, https://doi.org/10.1016/J.PRECAMRES.2006.06.003.
Fossen, H., and B. Tikoff (1998), Extended models of transpression and transtension, and application to tectonic settings, Geological Society Special Publication, 135(1), 15–33, https://doi.org/10.1144/gsl.sp.1998.135.01.02.
Fossen, H., B. Tikoff, C. Teyssier, and H. Fossen (1994), Strain modeling of transpressional and transtensional deformation, Norsk Geologisk Tidsskrift, 74, 134–145.
Fossen, H., G. C. G. Cavalcante, R. V. L. Pinheiro, and C. J. Archanjo (2019), Deformation – progressive or multiphase?, Journal of Structural Geology, 125, 82–99, https://doi.org/10.1016/j.jsg.2018.05.006.
Gifkins, R. C. (1994), Grain-boundary participation in high-temperature deformation: An historical review, Materials Characterization, 32(2), 59–77, https://doi.org/10.1016/1044-5803(94)90093-0.
Gremmel, J., G. Duclaux, M. Corsini, and J. Bascou (2024), Constrictional flow and strain partitioning during oblique deformation: Insights from the Variscan Tanneron Massif, SE France, Tektonika, 2(2), 112–140, https://doi.org/10.55575/tektonika2024.2.2.69.
Grenholm, M. (2019), The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles, Earth-Science Reviews, 193, 260–298, https://doi.org/10.1016/j.earscirev.2019.04.017.
Grenholm, M., M. Jessell, and N. Thébaud (2019a), Paleoproterozoic volcano-sedimentary series in the ca. 2.27–1.96 Ga Birimian Orogen of the southeastern West African Craton, Precambrian Research, 328, 161–192, https://doi.org/10.1016/j.precamres.2019.04.005.
Grenholm, M., M. Jessell, and N. Thébaud (2019b), A geodynamic model for the Paleoproterozoic (ca. 2.27–1.96 Ga) Birimian Orogen of the southern West African Craton – Insights into an evolving accretionary-collisional orogenic system, Earth-Science Reviews, 192, 138–193, https://doi.org/10.1016/j.earscirev.2019.02.006.
Groves, D. I., M. Santosh, R. J. Goldfarb, and L. Zhang (2018), Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits, Geoscience Frontiers, 9(4), 1163–1177, https://doi.org/10.1016/j.gsf.2018.01.006.
Harland, W. B. (1971), Tectonic transpression in Caledonian Spitsbergen, Geological Magazine, 108(1), 27–41, https://doi.org/10.1017/s0016756800050937.
Hauteville, A., A.-S. André-Mayer, A. Eglinger, J. Perret, T. Nobilet, Y. Teitler, B. Touré, L. Ciancaleoni, L. Marulier, and Y. Coulibaly (2025), Tourmaline as a textural, geochemical and isotopic marker of fault valve processes recorded at the Paleoproterozoic Lafigué orogenic gold deposit, Ivory Coast, Mineralium Deposita, 60(6), 1297–1324, https://doi.org/10.1007/s00126-024-01335-7.
Hayman, P. C., P. Bolz, G. Senyah, E. Tegan, S. Denyszyn, D. T. Murphy, and M. W. Jessell (2023), Physical and geochemical reconstruction of a 2.35–2.1 Ga volcanic arc (Toumodi Greenstone Belt, Ivory Coast, West Africa), Precambrian Research, 389(107029), 107,029, https://doi.org/10.1016/j.precamres.2023.107029.
Hirth, G., and J. Tullis (1992), Dislocation creep regimes in quartz aggregates, Journal of Structural Geology, 14(2), 145–159, https://doi.org/10.1016/0191-8141(92)90053-y.
Hodgson, C. J. (1989), The structure of shear-related, vein-type gold deposits: A review, Ore Geology Reviews, 4(3), 231–273, https://doi.org/10.1016/0169-1368(89)90019-x.
Holdsworth, R. E., C. A. Butler, and A. M. Roberts (1997), The recognition of reactivation during continental deformation, Journal of the Geological Society, 154(1), 73–78, https://doi.org/10.1144/gsjgs.154.1.0073.
Jébrak, M., and E. Marcoux (2008), Géologie des ressources minérales, Ministère des ressources naturelles et de la faune Avenue Ouest, QC, Canada.
Kamb, W. B. (1959), Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment, Journal of Geophysical Research, 64(11), 1891–1909, https://doi.org/10.1029/JZ064I011P01891.
Kennedy, W. Q. (1964), The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode, Annual Report of the Research Institute of African Geology, pp. 48–49.
Koffi, A. Y., N. Thébaud, A. N. Kouamelan, L. Baratoux, O. Bruguier, O. Vanderhaeghe, P. Pitra, A. I. S. Kemp, and N. J. Evans (2022), Archean to Paleoproterozoic crustal evolution in the Sassandra-Cavally domain (Côte d’Ivoire, West Africa): Insights from Hf and U-Pb zircon analyses, Precambrian Research, 382(106875), 106,875, https://doi.org/10.1016/j.precamres.2022.106875.
Kouamelan, A., C. Delor, and J. Peucat (1997), Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Coˆte d’Ivoire (Man Rise-West African Craton), Precambrian Research, 86(3-4), 177–199, https://doi.org/10.1016/S0301-9268(97)00043-0.
Kouamelan, A., S. C. Djro, M. E. Allialy, J. Paquette, and J. Peucat (2015), The oldest rock of Ivory Coast, Journal of African Earth Sciences, 103, 65–70, https://doi.org/10.1016/J.JAFREARSCI.2014.12.004.
Krantz, R. W. (1995), The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation, Journal of Structural Geology, 17 (8), 1125–1137, https://doi.org/10.1016/0191-8141(94)00129-n.
Lacroix, B., J. Hughes, A. Lahfid, J. E. Spangenberg, B. Putlitz, C. Ward, N. Niemi, and P. D. Kempton (2020), Structure and origin of the gold mineralization in the Nacimiento Block: The Los Burros deposits (Central California), Ore Geology Reviews, 125(103668), 103,668, https://doi.org/10.1016/j.oregeorev.2020.103668.
Lawley, C., J. Imber, and D. Selby (2013), Structural controls on orogenic Au mineralization during transpression: Lupa goldfield, southwestern Tanzania, Economic Geology and the Bulletin of the Society of Economic Geologists, 108(7), 1615–1640, https://doi.org/10.2113/econgeo.108.7.1615.
Leever, K. A., R. H. Gabrielsen, D. Sokoutis, and E. Willingshofer (2011), The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis: KINEMATICS OF STRAIN PARTITIONING, Tectonics, 30(2), 2010TC002,823, https://doi.org/10.1029/2010tc002823.
Lloyd, G., and B. Freeman (1994), Dynamic recrystallization of quartz under greenschist conditions, Journal of Structural Geology, 16(6), 867–881, https://doi.org/10.1016/0191-8141(94)90151-1.
Martin-Izard, A., D. Arias, M. Arias, P. Gumiel, D. J. Sanderson, C. Castañon, and J. Sanchez (2016), Ore deposit types and tectonic evolution of the Iberian Pyrite Belt: From transtensional basins and magmatism to transpression and inversion tectonics, Ore Geology Reviews, 79, 254–267, https://doi.org/10.1016/j.oregeorev.2016.05.011.
Martín-Izard, A., A. Arribas, D. Arias, J. Ruiz, and F. J. Fernández (2002), The Fe deposit, west-central Spain: Tectonic-hydrothermal uranium mineralization associated with transpressional faulting of alpine age, The Canadian Mineralogist, 40(5), 1505–1520, https://doi.org/10.2113/GSCANMIN.40.5.1505.
Masurel, Q., A. Eglinger, N. Thébaud, A. Allibone, A.-S. André-Mayer, H. McFarlane, J. Miller, M. Jessell, L. Aillères, O. Vanderhaeghe, S. Salvi, L. Baratoux, S. Perrouty, G. Begg, D. Fougerouse, P. Hayman, O. Wane, A. Tshibubudze, L. Parra-Avila, A. Kouamélan, and P. O. Amponsah (2022), Paleoproterozoic gold events in the southern West African Craton: review and synopsis, Mineralium Deposita, 57 (4), 513–537, https://doi.org/10.1007/s00126-021-01052-5.
Micklethwaite, S., H. A. Sheldon, and T. Baker (2010), Active fault and shear processes and their implications for mineral deposit formation and discovery, Journal of Structural Geology, 32(2), 151–165, https://doi.org/10.1016/j.jsg.2009.10.009.
Micklethwaite, S., A. Ford, W. Witt, and H. A. Sheldon (2015), The where and how of faults, fluids and permeability – insights from fault stepovers, scaling properties and gold mineralisation, Geofluids, 15(1-2), 240–251, https://doi.org/10.1111/gfl.12102.
Miller, L. D., H. H. Stowell, and G. E. Gehrels (2000), Progressive deformation associated with mid-Cretaceous to Tertiary contractional tectonism in the Juneau gold belt, Coast Mountains, southeastern Alaska, in Tectonics of the Coast Mountains, Southeastern Alaska and British Columbia, Geological Society of America, https://doi.org/10.1130/0-8137-2343-4.193.
Miller, M. G. (2014), 4•Kinematic Indicators in Brittle Fault Zones, in Fault-related Rocks, pp. 30–31, Princeton University Press.
Miller, R. B. (1994), A mid-crustal contractional stepover zone in a major strike-slip system, North Cascades, Washington, Journal of Structural Geology, 16(1), 47–60, https://doi.org/10.1016/0191-8141(94)90017-5.
Mériaud, N., N. Thébaud, Q. Masurel, P. Hayman, M. Jessell, A. Kemp, N. J. Evans, C. M. Fisher, and P. M. Scott (2020), Lithostratigraphic evolution of the Bandamian Volcanic Cycle in central Côte d’Ivoire: Insights into the late Eburnean magmatic resurgence and its geodynamic implications, Precambrian Research, 347 (105847), 105,847, https://doi.org/10.1016/j.precamres.2020.105847.
Nabavi, S. T., S. A. Alavi, S. Mohammadi, M. R. Ghassemi, and M. Frehner (2017), Analysis of transpression within contractional fault steps using finite-element method, Journal of Structural Geology, 96, 1–20, https://doi.org/10.1016/J.JSG.2017.01.004.
Nevitt, J. M., D. D. Pollard, and J. M. Warren (2014), Evaluation of transtension and transpression within contractional fault steps: Comparing kinematic and mechanical models to field data, Journal of Structural Geology, 60, 55–69, https://doi.org/10.1016/j.jsg.2013.12.011.
Okazaki, K., and H. Conrad (1972), Grain size distribution in recrystallized alpha-titanium, Transactions of the Japan Institute of Metals, 13(3), 198–204, https://doi.org/10.2320/MATERTRANS1960.13.198.
Oliver, N. H. S., and P. D. Bons (2001), Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein–wallrock patterns, geometry and microstructure, Geofluids, 1(2), 137–162, https://doi.org/10.1046/j.1468-8123.2001.00013.x.
Ouattara, G. (1998), Structure du batholite de Ferkéssédougou (secteur de Zuénoula, Côte d’Ivoire), Ph.D. thesis, Université d’Orléans, ISTO, Orléans, France.
Papa, S., G. Pennacchioni, L. Menegon, and M. Thielmann (2020), High-stress creep preceding coseismic rupturing in amphibolite-facies ultramylonites, Earth and Planetary Science Letters, 541(116260), 116,260, https://doi.org/10.1016/j.epsl.2020.116260.
Passchier, C. W., and R. A. J. Trouw (2005), Shear Zones, in Microtectonics, 2nd edition ed., pp. 111–158, Springer-Verlag, Berlin/Heidelberg, https://doi.org/10.1007/3-540-29359-0_5.
Peacock, D. C. P., and D. J. Sanderson (1995), Strike-slip relay ramps, Journal of Structural Geology, 17 (10), 1351–1360, https://doi.org/10.1016/0191-8141(95)97303-w.
Perret, J. (2025), GEOL-QMAPS (QGIS-based solution for digital geological mapping), https://doi.org/10.5281/ZENODO.14823224.
Perret, J., J. Feneyrol, A. Eglinger, A.-S. André-Mayer, C. Berthier, A. Ennaciri, and R. Bosc (2021), Tectonic record and gold mineralization in the central part of the Neoproterozoic Keraf suture, Gabgaba district, NE Sudan, Journal of African Earth Sciences, 181(104248), 104,248, https://doi.org/10.1016/j.jafrearsci.2021.104248.
Perret, J., M. W. Jessell, and E. Bétend (2024), An open-source, QGIS-based solution for digital geological mapping: GEOL-QMAPS, Applied Computing and Geosciences, 24(100197), 100,197, https://doi.org/10.1016/j.acags.2024.100197.
Perret, J., M. W. Jessell, Q. Masurel, P. C. Hayman, N. Thébaud, L. Baratoux, A. Kouamélan, A. Eglinger, A.-S. André-Mayer, A. Y. Koffi, I. Dia, J. Koné,
J. Davis, O. Wane, P. O. Amponsah, S. Naba, and O. Vanderhaeghe (2025), Review of Paleoproterozoic tectonics in the southern West African Craton: Insights from multi-disciplinary data integration, Precambrian Research, 422(107707), 107,707, https://doi.org/10.1016/j.precamres.2025.107707.
Perrouty, S., L. Aillères, M. W. Jessell, L. Baratoux, Y. Bourassa, and B. Crawford (2012), Revised Eburnean geodynamic evolution of the gold-rich southern Ashanti Belt, Ghana, with new field and geophysical evidence of pre-Tarkwaian deformations, Precambrian Research, 204-205, 12–39, https://doi.org/10.1016/j.precamres.2012.01.003.
Peters, S. G. (1993), Nomenclature, concepts and classification of oreshoots in vein deposits, Ore Geology Reviews, 8(1-2), 3–22, https://doi.org/10.1016/0169-1368(93)90025-t.
Platt, J. P., and W. M. Behr (2011), Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere, Journal of Structural Geology, 33(4), 537–550, https://doi.org/10.1016/j.jsg.2011.01.018.
Ramsay, J. G., and M. I. Huber (1987), Modern structural geology, Folds and Fractures, 2, 309–700.
Robert, F., A. Boullier, and K. Firdaous (1995), Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting, Journal of Geophysical Research, Solid Earth, 100(B7), 12,861–12,879, https://doi.org/10.1029/95JB00190.
Rutter, E. H., R. E. Holdsworth, and R. J. Knipe (2001), The nature and tectonic significance of fault-zone weakening: an introduction, Geological Society Special Publication, 186(1), 1–11, https://doi.org/10.1144/GSL.SP.2001.186.01.01.
Sanderson, D. J., and W. R. D. Marchini (1984), Transpression, Journal of Structural Geology, 6(5), 449–458, https://doi.org/10.1016/0191-8141(84)90058-0.
Seymour, N. M., J. S. Singleton, R. Gomila, G. Arancibia, J. Ridley, M. L. Gevedon, D. Stockli, and S. M. Seman (2024), Sodic-calcic alteration and transpressional shear along the Atacama fault system during IOCG mineralization, Copiapó, Chile, Mineralium Deposita, pp. 1–29, https://doi.org/10.1007/s00126-024-01259-2.
Shigematsu, N., D. J. Prior, and J. Wheeler (2006), First combined electron backscatter diffraction and transmission electron microscopy study of grain boundary structure of deformed quartzite, Journal of Microscopy, 224(3), 306–321, https://doi.org/10.1111/J.1365-2818.2006.01697.X.
Sibson, R. (1990), Conditions for fault-valve behaviour, Geological Society Special publication, 54(1), 15–28, https://doi.org/10.1144/GSL.SP.1990.054.01.02.
Sibson, R. (2001), Seismogenic framework for hydrothermal transport and ore deposition, in Structural Controls on Ore Genesis, Reviews in Economic Geology, vol. 14, edited by J. P. Richards and R. M. Tosdal, pp. 25–50, Society of Economic Geologists, https://doi.org/10.5382/rev.14.02.
Sibson, R. (2004), Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation, Journal of Structural Geology, 26(6-7), 1127–1136, https://doi.org/10.1016/J.JSG.2003.11.003.
Sibson, R., and J. Scott (1998), Stress/fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand, Ore Geology Reviews, 13(1-5), 293–306, https://doi.org/10.1016/S0169-1368(97)00023-1.
Sibson, R. H. (1981), Fluid flow accompanying faulting: field evidence and models, in Earthquake Prediction: An International Review, vol. 4, pp. 593–603, American Geophysical Union (AGU), https://doi.org/10.1029/ME004p0593.
Sibson, R. H. (1992), Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface, Earth-Science Reviews, 32(1-2), 141–144, https://doi.org/10.1016/0012-8252(92)90019-p.
Sibson, R. H. (1996), Structural permeability of fluid-driven fault-fracture meshes, Journal of Structural Geology, 18(8), 1031–1042, https://doi.org/10.1016/0191-8141(96)00032-6.
Sibson, R. H. (2020), Preparation zones for large crustal earthquakes consequent on fault-valve action, Earth, Planets and Space, 72(1), https://doi.org/10.1186/s40623-020-01153-x.
Solar, G. S., and M. Brown (2001), Deformation partitioning during transpression in response to Early Devonian oblique convergence, northern Appalachian orogen, USA, Journal of Structural Geology, 23(6-7), 1043–1065, https://doi.org/10.1016/s0191-8141(00)00175-9.
Stipp, M., and K. Kunze (2008), Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates, Tectonophysics, 448(1-4), 77–97, https://doi.org/10.1016/j.tecto.2007.11.041.
Stipp, M., H. Stünitz, R. Heilbronner, and S. M. Schmid (2002a), The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C, Journal of Structural Geology, 24(12), 1861–1884, https://doi.org/10.1016/s0191-8141(02)00035-4.
Stipp, M., H. Stünitz, R. Heilbronner, and S. M. Schmid (2002b), Dynamic recrystallization of quartz: correlation between natural and experimental conditions, Geological Society Special Publication, 200(1), 171–190, https://doi.org/10.1144/GSL.SP.2001.200.01.11.
Tikoff, B., and C. Teyssier (1994), Strain modeling of displacement-field partitioning in transpressional orogens, Journal of Structural Geology, 16(11), 1575–1588, https://doi.org/10.1016/0191-8141(94)90034-5.
Torgersen, E., and G. Viola (2014), Structural and temporal evolution of a reactivated brittle–ductile fault – Part I: Fault architecture, strain localization mechanisms and deformation history, Earth and Planetary Science Letters, 407, 205–220, https://doi.org/10.1016/j.epsl.2014.09.019.
Tornos, F., C. Casquet, and J. M. R. S. Relvas (2005), 4: Transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills: A model for the unusual metallogenesis of SW Iberia, Ore Geology Reviews, 27 (1-4), 133–163, https://doi.org/10.1016/j.oregeorev.2005.07.020.
Traoré, K., D. Chardon, S. Naba, O. Wane, and M. L. Bouaré (2022), Paleoproterozoic collision tectonics in West Africa: Insights into the geodynamics of continental growth, Precambrian Research, 376(106692), 106,692, https://doi.org/10.1016/j.precamres.2022.106692.
Trimby, P., D. Prior, and J. Wheeler (1998), Grain boundary hierarchy development in a quartz mylonite, Journal of Structural Geology, 20(7), 917–935, https://doi.org/10.1016/S0191-8141(98)00026-1.
Twiss, R. J. (1977), Theory and applicability of a recrystallized grain size paleopiezometer, Pure and Applied Geophysics, 115, 227–244, https://doi.org/10.1007/BF01637105.
Urai, J. L., P. F. Williams, and H. L. M. Van Roermund (1991), Kinematics of crystal growth in syntectonic fibrous veins, Journal of Structural Geology, 13(7), 823–836.
Wane, O., J.-P. Liégeois, N. Thébaud, J. Miller, V. Metelka, and M. Jessell (2018), The onset of the Eburnean collision with the Kenema-Man craton evidenced by plutonic and volcanosedimentary rock record of the Masssigui region, southern Mali, Precambrian Research, 305, 444–478, https://doi.org/10.1016/j.precamres.2017.11.008.
Weedon, P., E. Chapman, R. Espinoza, M. Veillette, and P. Criddle (2023), Fortuna Silver Mines Inc: Séguéla Gold Mine, Côte d’Ivoire, Tech. rep., Fortuna Silver Mines Inc.
Westaway, R. (1995), Deformation around stepovers in strike-slip fault zones, Journal of Structural Geology, 17 (6), 831–846, https://doi.org/10.1016/0191-8141(94)00098-k.
Wheeler, J., Z. Jiang, D. J. Prior, and J. Tullis (2004), Dynamic Recrystallisation of Quartz, Materials Science Forum, 467-470, 1243–1250, https://doi.org/10.4028/www.scientific.net/msf.467-470.1243.
White, J., and S. White (1981), On the structure of grain boundaries in tectonites, Tectonophysics, 78(1-4), 613–628, https://doi.org/10.1016/0040-1951(81)90032-9.
White, S. (1977), Geological significance of recovery and recrystallization processes in quartz, Tectonophysics, 39(1-3), 143–170, https://doi.org/10.1016/0040-1951(77)90093-2.
Worley, B. A., and C. J. L. Wilson (1996), Deformation partitioning and foliation reactivation during transpressional orogenesis, an example from the Central Longmen Shan, China, Journal of Structural Geology, 18(4), 395–411, https://doi.org/10.1016/0191-8141(95)00095-u.
Wright, S., M. Nowell, and D. Field (2011), A review of strain analysis using electron backscatter diffraction, Microscopy and Microanalysis, 17 (3), 316–329, https://doi.org/10.1017/S1431927611000055.
Wu, Y., J. Zhang, B. Zhang, X. Mao, Z. Lu, G. Zhou, X. Teng, and Q. Guo (2023), Early Paleozoic oblique convergence from subduction to collision: Insights from timing and structural style of the transpressional dextral shear zone in the Qilian orogen, northern Tibet of China, Geological Society of America Bulletin, https://doi.org/10.1130/b36947.1.
Xia, H., and J. P. Platt (2018), Quartz grainsize evolution during dynamic recrystallization across a natural shear zone boundary, Journal of Structural Geology, 109, 120–126, https://doi.org/10.1016/j.jsg.2018.01.007.
Yan, Q., X. Jiang, W. Li, C. Li, and F. Yang (2024), Genesis of alkaline porphyries and associated Cu–Au–Pb–Ag polymetallic mineralization in an intracontinental transpression setting: Example from the Yao’an volcano-plutonic complex in western Yangtze Craton, SW China, Ore Geology Reviews, p. 105922, https://doi.org/10.1016/j.oregeorev.2024.105922.
Zoheir, B. (2011), Transpressional zones in ophiolitic mélange terranes: Potential exploration targets for gold in the South Eastern Desert, Egypt, Journal of Geochemical Exploration, 111(1-2), 23–38, https://doi.org/10.1016/j.gexplo.2011.07.003.