Practical Assessment of Quartz Crystallographic Preferred Orientation Strength
Main Article Content
Abstract
The ordering strength of crystallographic preferred orientation data can be assessed in different ways, however, the appropriateness of the methodology used to do so can depend on the geometry of the distributions. Eigenvector-based ordering evaluation methods, for example, may not be appropriate for data that comprise multiple, variably oriented distributions such as those commonly found in quartz c-axis crystallographic preferred orientations. Examination of artificial data that represent a variety of different potential c-axis distributions shows a significant correlation between the relative orientations of those distributions (i.e., the opening angle in a cross-girdled quartz c-axis pole figure) and the strengths calculated using eigen-vector based evaluation methods; larger pole figure opening angles correlate with decreasing distribution ordering strength. The same correlation does not exist when strength is evaluated using the l2 - norm of the estimated probability density function (JPF) of the same data. The direct correlations between pole figure c-axis opening angles and ordering strength noted in the artificial distributions are also demonstrated in the evaluation of real-world data, though significant complications related to heterogeneous nature, and/or deformation, of the natural specimens can partially obfuscate the relationship. Regardless, given the potential effect of geometry on eigenvector-based evaluation methods we recommend that the ordering strength of pole figure data be evaluated using JPF.
Article Details
References
Bachmann, F., R. Hielscher, and H. Schaeben (2010), Texture analysis with MTEX – free and open source soft- ware toolbox, Solid state phenomena, 160, 63–68, doi: 10.4028/www.scientific.net/ssp.160.63.
Barnhoorn, A., M. Bystricky, L. Burlini, and K. Kunze (2004), The role of recrystallisation on the deformation be- haviour of calcite rocks: large strain torsion experiments on carrara marble, Journal of Structural Geology, 26(5), 885–903, doi: 10.1016/j.jsg.2003.11.024.
Botev, Z. I., J. F. Grotowski, and D. P. Kroese (2010), Kernel density estimation via diffusion, The Annals of Statistics, 38(5), 2916–2957, doi: 10.1214/10-AOS799.
Chateigner, D. (2005), Reliability criteria in quantitative texture analysis with experimental and simulated orientation distributions, Journal of applied crystallography, 38(4), 603–611, doi: 10.1107/s0021889805013695.
Faleiros, F. M., R. Moraes, M. Pavan, and G. A. C. Campanha (2016), A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer, Tectonophysics, 671, 173–182, doi: 10.1016/j.tecto.2016.01.014.
Fara, H. D., and A. E. Scheidegger (1963), An eigen- value method for the statistical evaluation of fault plane solutions of earthquakes, Bulletin of the Seismological Society of America, 53(4), 811–816, doi: 10.1785/b- ssa0530040811.
Graziani, R., K. P. Larson, and M. Soret (2020), The effect of hydrous mineral content on competitive strain localization mechanisms in felsic granulites, Journal of Structural Geology, 134(104015), 104,015, doi: 10.1016/j.jsg.2020.104015.
Graziani, R., K. Larson, M. Smit, J. M. Cottle, J. Lamming, and N. Piette-Lauzière (2022), Modern style nappe stacking in the paleoproterozoic lower crust: An example from the snowbird tectonic zone, canadian shield, Precambrian research, 380(106817), 106,817, doi: 10.1016/j.precam- res.2022.106817.
Hansen, L. N., Y.-H. Zhao, M. E. Zimmerman, and D. L. Kohlstedt (2014), Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy, Earth and planetary science letters, 387, 157–168, doi: 10.1016/j.epsl.2013.11.009.
Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, Journal of geophysical research, 111(B10), doi: 10.1029/2005jb004194.
Herwegh, M., J. Linckens, A. Ebert, A. Berger, and S. H. Brod- hag (2011), The role of second phases for controlling microstructural evolution in polymineralic rocks: A review, Journal of Structural Geology, 33(12), 1728–1750, doi: 10.1016/j.jsg.2011.08.011.
Hunter, N. J. R., R. F. Weinberg, C. J. L. Wilson, V. Luzin, and S. Misra (2018), Microscopic anatomy of a “hot-on-cold” shear zone: Insights from quartzites of the main central thrust in the alaknanda region (garhwal himalaya), GSA Bulletin, 130(9-10), 1519–1539, doi: 10.1130/B31797.1.
Kilian, R., and R. Heilbronner (2017), Analysis of crystallographic preferred orientations of experimentally deformed black hills quartzite, Solid earth, 8(5), 1095–1117, doi: 10.5194/se-8-1095-2017.
Kilian, R., R. Heilbronner, and H. Stünitz (2011), Quartz microstructures and crystallographic preferred orientation: Which shear sense do they indicate?, Journal of Structural Geology, 33(10), 1446–1466, doi: 10.1016/j.jsg.2011.08.005.
Kruhl, J. H. (1998), Prism- and basal-plane parallel sub- grain boundaries in quartz: a microstructural geothermobarometer: Reply, Journal of Metamorphic Geology, 16, 142–146.
Larson, K., J. Cottle, G. Lederer, and S. M. Rai (2017), Defining shear zone boundaries using fabric intensity gradients: An example from the east-central nepal himalaya, Geosphere, 13(3), 771–781, doi: 10.1130/ges01373.1.
Larson, K. P. (2018), Refining the structural framework of the khimti khola region, east-central nepal himalaya, using quartz textures and c-axis fabrics, Journal of Structural Geology, 107, 142–152, doi: 10.1016/j.jsg.2017.12.014.
Larson, K. P., and J. M. Cottle (2014), Midcrustal discontinuities and the assembly of the Himalayan midcrust, Tectonics, 33(5), 718–740, doi: 10.1002/2013tc003452.
Law, R. D. (2014), Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review, Journal of Structural Geology, 66, 129–161, doi: 10.1016/j.jsg.2014.05.023.
Law, R. D., M. P. Searle, and R. L. Simpson (2004), Strain, deformation temperatures and vorticity of flow at the top of the greater himalayan slab, everest massif, tibet, Journal of the Geological Society, 161(2), 305–320, doi: 10.1144/0016-764903-047.
Law, R. D., M. J. Jessup, M. P. Searle, M. K. Francsis, D. J. Waters, and J. M. Cottle (2011), Telescoping of isotherms beneath the south Tibetan detachment system, mount Everest massif, Journal of Structural Geology, 33(11), 1569–1594, doi: 10.1016/j.jsg.2011.09.004.
Law, R. D., D. W. Stahr, III, M. K. Francsis, K. T. Ashley, B. Grasemann, and T. Ahmad (2013), Deformation temperatures and flow vorticities near the base of the greater Himalayan series, Sutlej valley and Shimla klippe, NW India, Journal of Structural Geology, 54, 21–53, doi: 10.1016/j.jsg.2013.05.009.
Law, R. D., J. R. Thigpen, S. E. Mazza, C. A. Mako, M. Krabben- dam, B. M. Spencer, K. T. Ashley, R. A. Strachan, and E. F. Davis (2021), Tectonic transport directions, shear senses and deformation temperatures indicated by quartz c-axis fabrics and microstructures in a NW-SE transect across the moine and sgurr beag thrust sheets, caledonian orogen of northern scotland, Geosciences, 11(10), 411, doi: 10.3390/geosciences11100411.
Lisle, R. J. (1985), The use of the orientation tensor for the description and statistical testing of fabrics, Journal of Structural Geology, 7(1), 115–117, doi: 10.1016/0191- 8141(85)90119-1.
Lister, G. S. (1977), Discussion: Crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear, Tectonophysics, 39(1-3), 51–54, doi: 10.1016/0040-1951(77)90087-7.
Lister, G. S., and G. P. Price (1978), Fabric development in a quartz-feldspar mylonite, Tectonophysics, 49(1-2), 37–78, doi: 10.1016/0040-1951(78)90097-5.
Lister, G. S., and P. F. Williams (1979), Fabric development in shear zones: theoretical controls and observed phenomena, Journal of Structural Geology, 1(4), 283–297, doi: 10.1016/0191-8141(79)90003-8.
Long, S. P., C. L. Mullady, J. K. Starnes, S. M. Gordon, K. P. Lar- son, L. S. Pianowski, R. B. Miller, and E. Soignard (2019), A structural model for the south tibetan detachment system in northwestern bhutan from integration of temperature, fabric, strain, and kinematic data, Lithosphere, 11(4), 465–487, doi: 10.1130/l1049.1.
Long, S. P., M. J. Kohn, B. C. Kerswell, J. K. Starnes, K. P. Larson, N. R. Blackford, and E. Soignard (2020), Thermometry and microstructural analysis imply protracted extensional exhumation of the tso morari UHP nappe, northwestern himalaya: Implications for models of UHP exhumation, Tectonics, 39(12), 663, doi: 10.1029/2020tc006482.
Mainprice, D., F. Bachmann, R. Hielscher, and H. Schaeben (2015), Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components, Geological Society, London, Special Publications, 409(1), 251–271, doi: 10.1144/SP409.8.
Mardia, K. V. (1972), 9 - INFERENCE PROBLEMS ON THE SPHERE, in Statistics of Directional Data, edited by K. V. Mardia, pp. 249–283, Academic Press, doi: 10.1016/B978-0-12-471150-1.50015-7.
Morgan, S. S., and R. D. Law (2004), Unusual transition in quartzite dislocation creep regimes and crystal slip systems in the aureole of the eureka Valley–Joshua Flat–Beer creek pluton, California: a case for anhydrous conditions created by decarbonation reactions, Tectonophysics, 384(1-4), 209–231, doi: 10.1016/j.tecto.2004.03.016.
Parsons, A. J., R. J. Phillips, G. E. Lloyd, M. P. Searle, and R. D. Law (2014), Quantified vertical strain profile through the greater himalayan sequence, Annapurna-Dhaulagiri himalaya, central nepal, Journal of Himalayan Earth sciences, Abstract29th Himalaya-Karakoram-Tibet Workshop, 126–127.
R Core Team (2021), R: A language and environment for statistical computing. R foundation for statistical computing.
Schaeben, H., H. Siemes, and J. J. Fundenberger (1998), The ill-posedness of the inverse problem of texture goniometry: The variation width of feasible orientation density functions revisited, Journal of applied crystallography, 31(2), 136–148, doi: 10.1107/s002188989700825x.
Scheidegger, A. E. (1964), The tectonic stress and tectonic motion direction in Europe and western Asia as calculated from earthquake fault plane solutions, Bulletin of the Seismological Society of America, 54(5A), 1519–1528, doi: 10.1785/bssa05405a1519.
Scheidegger, A. E. (1965), ON THE STATISTICS OF THE ORIENTATION OF BEDDING PLANES, U.S. Geological Survey Professional Paper, 525, 164.
Skemer, P., I. Katayama, Z. Jiang, and S.-I. Karato (2005), The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation, Tectonophysics, 411(1-4), 157–167, doi: 10.1016/j.tecto.2005.08.023.
Starkey, J. (1993), The analysis of three-dimensional orientation data, Canadian journal of earth sciences, 30(7), 1355–1362, doi: 10.1139/e93-116.
Starnes, J. K., S. P. Long, S. M. Gordon, J. Zhang, and E. Soignard (2020), Using quartz fabric intensity parameters to delineate strain patterns across the himalayan main central thrust, Journal of Structural Geology, 131(103941), 103,941, doi: 10.1016/j.jsg.2019.103941.
Thigpen, J. R., R. D. Law, G. E. Lloyd, and S. J. Brown (2010), Deformation temperatures, vorticity of flow, and strain in the moine thrust zone and moine nappe: Reassessing the tectonic evolution of the Scandian foreland–hinterland transition zone, Journal of Structural Geology, 32(7), 920–940, doi: 10.1016/j.jsg.2010.05.001.
Vollmer, F. W. (1990), An application of eigenvalue methods to structural domain analysis, Geological Society of America bulletin, 102(6), 786–791, doi: 10.1130/0016- 7606(1990)102<0786:aaoemt>2.3.co;2.
Vollmer, F. W., and SUNY New Paltz (2020), Representing progressive fabric paths on a triangular plot using a fabric density index and crystal axes eigenvector barycenters, in Geological Society of America Abstracts with Pro- grams 52(6), 358862, Geological Society of America, Montreal, QC, doi: 10.1130/abs/2020am-358862.
Watson, G. S. (1965), Equatorial distributions on a sphere, Biometrika, 52(1/2), 193–201, doi: 10.2307/2333824.
Watson, G. S. (1966), The statistics of orientation data, The Journal of geology, 74(5, Part 2), 786–797, doi: 10.1086/627211.
Wenk, H.-R. (2002), 10. texture and anisotropy, in Plastic De- formation of Minerals and Rocks, edited by S.-I. Karato and H.-R. Wenk, pp. 291–330, De Gruyter, Berlin, Boston.
Woodcock, N. H. (1977), Specification of fabric shapes using an eigenvalue method, GSA Bulletin, 88(9), 1231–1236, doi: 10.1130/0016- 7606(1977)88<1231:SOFSUA>2.0.CO;2.
Woodcock, N. H., and M. A. Naylor (1983), Randomness testing in three-dimensional orientation data, Journal of Structural Geology, 5(5), 539–548, doi: 10.1016/0191- 8141(83)90058-5.