Holocene Earthquakes on the Tambomachay Fault near Cusco, Central Andes

Main Article Content

Lorena Rosell
Carlos Benavente
Swann Zerathe
Sam Wimpenny
Enoch Aguirre
Richard Walker
Christoph Grützner
Briant Garcia
Laurence Audin
Andy Combey
Anderson Palomino
Fabrizio Delgado
Miguel Rodríguez-Pascua
José Cárdenas


A system of active normal faults around the city of Cusco have severely damaged the city in major earthquakes in pre-hispanic times, 1650 and 1950 CE. Detailed studies of these faults adjacent to Cusco are therefore needed to build an understanding of seismic hazard in the region. We present new geomorphological and paleoseismological evidence for multiple Holocene earthquakes on the Tambomachay Fault, a 20 km-long normal fault that runs along the northern margin of the Cusco Basin.  The western segment of the fault preserves fault scarps that cut moraine crests with a mean throw of 4.3 ± 0.4 m. We determine a 13.8 ± 0.6 ka depositional age of these moraines using 10Be cosmogenic surface-exposure dating of boulders embedded in the moraines, implying a Holocene-average fault slip rate of 0.3 ± 0.1 mm/yr. We also excavated a trench across the moraine crests. By reconstructing the trench stratigraphy with radiocarbon dating, we identified three surface-rupturing earthquakes over the last 8–9 ka. The oldest earthquake occurred between 8.5 and 8.3 ka, a second event between 6.8 and 5.5 kyrs, and the most recent earthquake between 1.2 and 0.9 ka. All of the ruptures predate Inca times (>1 ka). These surface-rupturing earthquakes are likely to have had moment magnitudes of Mw 6.4-6.9. Similar events have the capacity to severely damage modern-day Cusco due to their proximity to the city, which now has a population of 500,000.

Article Details



Agisoft (2018), Agisoft PhotoScan User Manual - Professional Edition, Version 1.4.

Aguirre, E., C. Benavente, L. Audin, S. Wimpenny, S. Baize, L. Rosell, F. Delgado, B. García, and A. Palomino (2021), Earthquake surface ruptures on the altiplano and geomorphological evidence of normal faulting in the December 2016 (Mw 6.1) Parina earthquake, Peru, Journal of South American Earth Sciences, 106, 103,098, doi: 10.1016/j.jsames.2020.103098.

Alcalá-Reygosa, J., D. Palacios, and L. Vázquez-Selem (2017), A preliminary investigation of the timing of the local last glacial maximum and deglaciation on HualcaHualca volcano - Patapampa Altiplano (arid Central Andes, Peru), Quaternary International: the Journal of the International Union for Quaternary Research, 449, 149–160, doi: 10.1016/j.quaint.2017.07.036.

Arnold, M., S. Merchel, D. L. Bourlès, R. Braucher, L. Benedetti, R. C. Finkel, G. Aumaître, A. Gottdang, and M. Klein (2010), The French accelerator mass spectrometry facility ASTER: Improved performance and developments, Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 268(11), 1954–1959, doi: 10.1016/j.nimb.2010.02.107.

Arnold, M., G. Aumaître, D. L. Bourlès, K. Keddadouche, R. Braucher, R. C. Finkel, E. Nottoli, L. Benedetti, and S. Merchel (2013), The French accelerator mass spectrometry facility ASTER after 4years: Status and recent developments on 36Cl and 129I, Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 294, 24–28, doi: 10.1016/j.nimb.2012.01.049.

Audin, L., C. David, S. Hall, D. Farber, and G. Hérail (2007), Geomorphic Evidences Of Recent Tectonic Activity In The Forearc, Revista de la Asociacion Geologica Argentina, 61.

Benavente, C., F. Delgado, E. Taipe, L. Audin, and W. Pari (2013), Neotectónica y peligro sísmico en la región Cusco, Tech. Rep. 55, Instituto Geológico, Minero y Metalúrgico - INGEMMET, Lima.

Benavente, C., S. Zerathe, L. Audin, S. R. Hall, X. Robert, F. Delgado, J. Carcaillet, and ASTER Team (2017), Active transpressional tectonics in the andean forearc of southern peru quantified by 10Be surface exposure dating of an active fault scarp, Tectonics, 36(9), 1662–1678, doi: 10.1002/2017tc004523.

Benavente, C., S. Wimpenny, L. Rosell, X. Robert, A. Palomino, L. Audin, E. Aguirre, and B. García (2021), Paleoseismic evidence of an M w 7 pre-Hispanic earthquake in the Peruvian forearc, Tectonics, 40(6), doi: 10.1029/2020tc006479.

Benavente, C., A. Palomino, S. Wimpenny, B. García, L. Rosell, E. Aguirre, J. Macharé, A. M. Rodriguez Padilla, and S. R. Hall (2022), Paleoseismic evidence of the 1715 C.E earthquake on the Purgatorio Fault in Southern Peru: Implications for seismic hazard in subduction zones, Tectonophysics, 834, 229,355, doi: 10.1016/j.tecto.2022.229355.

Beyer, R. A., O. Alexandrov, and S. McMichael (2018), The Ames stereo pipeline: NASA’s open source software for deriving and processing terrain data, Earth and space science (Hoboken, N.J.), 5(9), 537–548, doi: 10.1029/2018ea000409.

Braucher, R., V. Guillou, D. L. Bourlès, M. Arnold, G. Aumaître, K. Keddadouche, and E. Nottoli (2015), Preparation of ASTER in-house 10Be/9Be standard solutions, Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 361, 335–340, doi: 10.1016/j.nimb.2015.06.012.

Bromley, G. R. M., J. M. Schaefer, G. Winckler, B. L. Hall, C. E. Todd, and K. M. Rademaker (2009), Relative timing of last glacial maximum and late-glacial events in the central tropical Andes, Quaternary Science Reviews, 28(23), 2514–2526, doi: 10.1016/j.quascirev.2009.05.012.

Broxton, M. J., and L. J. Edwards (2008), The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery, in 39th Lunar and Planetary Science Conference, p. 2419, LPI Contribution.

Cabrera, J., and M. Sébrier (1998), Surface rupture associated with a 5.3-mb earthquake: The 5 April 1986 Cuzco earthquake and kinematics of the Chincheros-Quoricocha faults of the High Andes, Peru, Bulletin of the Seismological Society of America, 88(1), 242–255, doi: 10.1785/BSSA0880010242.

Cabrera Nuñez, J. (1988), Néotectonique et sismotectonique dans la Cordillère andine au niveau du changement de géométrie de la subduction : la region de Cuzco (Pérou), Ph.D. thesis, Paris 11.

Carlotto, V. (1998), Evolution andine et raccourcissement au niveau de Cusco (13°-16°S) , Pérou: Enregistrement sédimentaire, chronologie, contrôles paléogéographiques, évolution cinématique, Ph.D. thesis, Université Joseph-Fourier - Grenoble I.

Carlotto, V., J. Cardenas, and G. Carlier (2010), Mapa geológico del Cuadrángulo de Cusco, escala 1:50 000, Hoja 28-s, cuadrante-IV.

Clapperton, C. M. (1983), The glaciation of the Andes, Quaternary Science Reviews, 2(2), 83–155, doi: 10.1016/0277-3791(83)90005-7.

Datos Sísmicos (2022), CENSIS - Instituto Geofísico Del Perú, https://ultimosismo.igp.gob.pe/datos-sismicos.

Dortch, J. M., M. D. Tomkins, S. Saha, M. K. Murari, L. M. Schoenbohm, and D. Curl (2022), A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), Quaternary geochronology, 71, 101,323, doi: 10.1016/j.quageo.2022.101323.

Ekström, G., M. Nettles, and A. M. Dziewoński (2012), The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, 200-201, 1–9, doi: 10.1016/j.pepi.2012.04.002.

Ericksen, G. E., J. F. Concha, and E. Silgado (1954), The Cusco, Peru, Earthquake of May 21, 1950, Bulletin of the Seismological Society of America, 44(2A), 97–112, doi: 10.1785/BSSA04402A0097.

Gisbert, T. (1999), El paraíso de los pájaros parlantes. Grützner, C., P. Fischer, and K. Reicherter (2016), Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics, Geophysical Journal International, 204(3), 1662–1677, doi: 10.1093/gji/ggv558.

Heyman, J., P. J. Applegate, R. Blomdin, N. Gribenski, J. M. Harbor, and A. P. Stroeven (2016), Boulder height – exposure age relationships from a global glacial 10Be compilation, Quaternary geochronology, 34, 1–11, doi: 10.1016/j.quageo.2016.03.002.

Hogg, A. G., T. J. Heaton, Q. Hua, J. G. Palmer, C. S. M. Turney, J. Southon, A. Bayliss, P. G. Blackwell, G. Boswijk, C. B. Ramsey, C. Pearson, F. Petchey, P. Reimer, R. Reimer, and L. Wacker (2020), SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP, Radiocarbon, 62(4), 759–778, doi: 10.1017/RDC.2020.59.

Huamán, R. (1987), Aspectos sismotectónicos del sismo del Cuzco del 5 de abril de 1986, Tech. rep., IGP, Lima. Jackson, J. A., and N. J. White (1989), Normal faulting in the upper continental crust: observations from regions of active extension, Journal of Structural Geology, 11(1), 15–36, doi: 10.1016/0191-8141(89)90033-3.

Kelly, M. A., T. V. Lowell, P. J. Applegate, F. M. Phillips, J. M. Schaefer, C. A. Smith, H. Kim, K. C. Leonard, and A. M. Hudson (2015), A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes, Quaternary Geochronology, 26, 70–85, doi: 10.1016/j.quageo.2013.10.007.

Macharé Ordoñez, J., C. L. Benavente Escobar, and L. Audin (2009), Síntesis descriptiva del mapa neotectónico 2008 - [Boletín C 40], Instituto Geológico, Minero y Metalúrgico - INGEMMET.

Machette, M. N. (2000), Active, capable, and potentially active faults — a paleoseismic perspective,

Journal of Geodynamics, 29(3), 387–392, doi: 10.1016/S0264-3707(99)00060-5.

Mackenzie, D., and A. Elliott (2017), Untangling tectonic slip from the potentially misleading effects of landform geometry, Geosphere, 13(4), 1310–1328, doi: 10.1130/GES01386.1.

Martin, L. C. P., P.-H. Blard, J. Lavé, R. Braucher, M. Lupker, T. Condom, J. Charreau, V. Mariotti, ASTER Team, and E. Davy (2015), In situ cosmogenic 10Be production rate in the High Tropical Andes, Quaternary Geochronology, 30, 54–68, doi: 10.1016/j.quageo.2015.06.012.

Martin, L. C. P., P.-H. Blard, G. Balco, J. Lavé, R. Delunel, N. Lifton, and V. Laurent (2017), The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quaternary Geochronology, 38, 25–49, doi: 10.1016/j.quageo.2016.11.006.

Martin, L. C. P., P.-H. Blard, J. Lavé, T. Condom, M. Prémaillon, V. Jomelli, D. Brunstein, M. Lupker, J. Charreau, V. Mariotti, B. Tibari, ASTER Team, and E. Davy (2018), Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High, Science Advances, 4(8), eaar2514, doi: 10.1126/sciadv.aar2514.

Martin, L. C. P., P.-H. Blard, J. Lavé, V. Jomelli, J. Charreau, T. Condom, M. Lupker, M. Arnold, G. Aumaître, D. L. Bourlès, and K. Keddadouche (2020), Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lakes during the last deglaciation, Quaternary Science Reviews, 247, 106,542, doi: 10.1016/j.quascirev.2020.106542.

McCalpin, J. (2009), Paleoseismology, International geophysics series, 2nd ed ed., Academic Press, Burlington, MA. McQuarrie, N., T. A. Ehlers, J. B. Barnes, and B. Meade (2008), Temporal variation in climate and tectonic coupling in the central Andes, Geology, 36(12), 999–1002, doi: 10.1130/G25124A.1.

Merchel, S., and U. Herpers (1999), An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry, Radiochimica Acta, 84(4), 215–220, doi: 10.1524/ract.1999.84.4.215.

Merchel, S., M. Arnold, G. Aumaître, L. Benedetti, D. L. Bourlès, R. Braucher, V. Alfimov, S. P. H. T. Freeman, P. Steier, and A. Wallner (2008), Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation, Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 266(22), 4921–4926, doi: 10.1016/j.nimb.2008.07.031.

Mercier, J. L., M. Sebrier, A. Lavenu, J. Cabrera, O. Bellier, J.-F. Dumont, and J. Machrare (1992), Changes in the tectonic regime above a subduction zone of Andean Type: The Andes of Peru and Bolivia during the Pliocene-Pleistocene, Journal of Geophysical Research, 97(B8), 11,945, doi: 10.1029/90jb02473.

Molnar, P. (1979), Earthquake recurrence intervals and plate tectonics, Bulletin of the Seismological Society of America, 69(1), 115–133, doi: 10.1785/BSSA0690010115.

Muscheler, R., J. Beer, P. W. Kubik, and H.-A. Synal (2005), Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C, Quaternary science reviews, 24(16), 1849–1860, doi: 10.1016/j.quascirev.2005.01.012.

Oncken, O., D. Hindle, J. Kley, K. Elger, P. Victor, and K. Schemmann (2006), Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models, in The Andes: Active Subduction Orogeny, edited by O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V. A. Ramos, M. R. Strecker, and P. Wigger, Frontiers in Earth Sciences, pp. 3–27, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-540-48684-8_1.

Palma, R. (1901), Anales del Cuzco, 1600 á 1750, “El Estado. Ramsey, B. (2018), ORAU - OxCal Program, v.4.3: Radiocarbon Accelerator Unit.

Ramsey, C. B. (2017), Methods for Summarizing Radiocarbon Datasets, Radiocarbon, 59(6), 1809–1833, doi: 10.1017/RDC.2017.108.

Sébrier, M., J. L. Mercier, F. Mégard, G. Laubacher, and others (1985), Quaternary normal and reverse faulting and the state of stress in the central Andes of south Peru, Tectonics, 4(7), 739–780, doi: 10/dv7bkj.

Silgado, E. (1978), Historia de los sismos más notables ocurridos en el Perú (1513 -1974), Tech. rep., Instituto de Geología y Minería.

Tavera, H., C. Agüero, and E. Fernández (2016), Catálogo general de isosistas para sismos peruanos, Tech. rep., Instituto Geofísico del Perú, Lima.

Thingbaijam, K. K. S., P. Martin Mai, and K. Goda (2017), New empirical earthquake source-scaling laws, Bulletin of the Seismological Society of America, 107(5), 2225–2246, doi: 10.1785/0120170017.

Thorson Brown, E., J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, and E. J. Brook (1991), Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al, Geochimica et Cosmochimica Acta, 55, 2269–2283, doi: 10.1016/0016-7037(91)90103-C.

Villegas-Lanza, J. C., M. Chlieh, O. Cavalié, H. Tavera, P. Baby, J. Chire-Chira, and J.-M. Nocquet (2016), Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation, Journal of Geophysical Research, [Solid Earth], 121(10), 7371–7394, doi: 10.1002/2016jb013080.

Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84(4), 974–1002, doi: 10.1785/BSSA0840040974.

Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds (2012), ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, doi: 10.1016/j.geomorph.2012.08.021.

Wimpenny, S., A. Copley, C. Benavente, and E. Aguirre (2018), Extension and Dynamics of the Andes Inferred From the 2016 Parina (Huarichancara) Earthquake, Journal of Geophysical Research, [Solid Earth], 123(9), 8198–8228, doi: 10.1029/2018JB015588.

Wimpenny, S., C. Benavente, A. Copley, B. Garcia, L. Rosell, A. O’Kane, and E. Aguirre (2020), Observations and dynamical implications of active normal faulting in South Peru, Geophysical Journal International, 222(1), 27–53, doi: 10.1093/gji/ggaa144.