APWP-online.org: a Global Reference Database and Open-Source Tools for Calculating Apparent Polar Wander Paths and Relative Paleomagnetic Displacements
Main Article Content
Abstract
Paleomagnetism provides a quantitative tool for estimating the paleoposition of rock units relative to the Earth’s spin axis and is widely used to determine relative tectonic motions (vertical-axis rotations and paleolatitudinal motions). These motions are commonly quantified as relative paleomagnetic displacements by comparing a study-mean paleomagnetic pole with a reference pole provided by an apparent polar wander path (APWP), even though these poles are calculated by averaging paleomagnetic data from different hierarchical levels. However, this conventional approach was shown to strongly overestimate the resolution at which such displacements can be determined. This problem was recently overcome by comparing paleomagnetic poles computed at the same hierarchical level, whereby the uncertainty of the reference pole is weighted against the number of sites underlying the study-mean pole. To enable the application of this approach, a new global APWP was calculated for the last 320 Ma from (simulated) site-level paleomagnetic data. Applying this comparison method requires a computationally more intensive procedure, however. Here, we therefore present the online, open-source environment (https://apwp-online.org) that provides user-friendly tools to determine relative paleomagnetic displacements and to compute APWPs from site-level paleomagnetic data. In addition, the website hosts the curated paleomagnetic database used to compute the most recent global APWP and includes an interface for adding high-quality paleomagnetic data that may be used for future iterations of the global APWP. We illustrate how the tools can be used through two case studies: the vertical-axis rotation history of the Japanese Islands and the paleolatitudinal motion of the intra-oceanic Olyutorsky arc
Article Details
References
Bazhenov, M. L., N. M. Levashova, and J. G. Meert (2016), How well do precambrian paleomagnetic data agree with the phanerozoic apparent polar wander path? a baltica case study, Precambrian research, 285, 80–90, doi: 10.1016/j.precamres.2016.09.008.
Beck, M. E., Jr (1980), Paleomagnetic record of plate-margin tectonic processes along the western edge of north america, Journal of geophysical research, 85(B12), 7115–7131, doi: 10.1029/jb085ib12p07115.
Besse, J., and V. Courtillot (2002), Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 myr, Journal of geophysical research, 107(B11), EPM 6–1–EPM 6–31, doi: 10.1029/2000jb000050.
Butler, R. F. (1992), Paleomagnetism: magnetic domains to geologic terranes, vol. 319, Blackwell Scientific Publications.
Coe, R., B. R. Globerman, P. W. Plumley, and G. Thrupp (1985), Paleomagnetic results from alaska and their tectonic implications, Precambrian research.
Cox, A., and R. B. Hart (1991), Plate Tectonics: How It Works, John Wiley & Sons.
Demarest, H. H., Jr (1983), Error analysis for the determination of tectonic rotation from paleomagnetic data, Journal of geophysical research, 88(B5), 4321–4328, doi: 10.1029/jb088ib05p04321.
Domeier, M., G. E. Shephard, J. Jakob, C. Gaina, P. V. Doubrovine, and T. H. Torsvik (2017), Intraoceanic subduction spanned the pacific in the late Cretaceous-Paleocene, Science advances, 3(11), eaao2303, doi: 10.1126/sciadv.aao2303.
Fisher, R. (1953), Dispersion on a sphere, Proceedings. Mathematical, physical, and engineering sciences / the Royal Society, 217(1130), 295–305, doi: 10.1098/rspa.1953.0064.
Gallo, L., M. Domeier, F. Sapienza, N. Swanson-Hysell, B. Vaes, Y. Zhang, M. Arnould, A. Eyster, D. Gürer, Á. Király, B. Robert, T. Rolf, G. Shephard, and A. van der Boon (2023), Embracing uncertainty to resolve polar wander: A case study of cenozoic north america, Geophysical research letters, 50(11), e2023GL103,436, doi: 10.1029/2023GL103436.
Gerritsen, D., B. Vaes, and D. J. J. Hinsbergen (2022), Influence of data filters on the position and precision of paleomagnetic poles: What is the optimal sampling strategy?, Geochemistry, Geophysics, Geosystems, 23(4), e2021GC010,269, doi: 10.1029/2021gc010269.
Jarboe, N. A., A. A. Koppers, L. Tauxe, R. Minnett, and C. Constable (2012), The online MagIC database: Data archiving, compilation, and visualization for the geomagnetic, paleomagnetic and rock magnetic communities, in AGU Fall Meeting Abstracts, vol. 2012, pp. GP31A–1063.
Kent, D. V., and E. Irving (2010), Influence of inclination error in sedimentary rocks on the triassic and jurassic apparent pole wander path for north america and implications for cordilleran tectonics, Journal of geophysical research, 115(B10), doi: 10.1029/2009jb007205.
Konstantinovskaia, E. A. (2001), Arc–continent collision and subduction reversal in the cenozoic evolution of the northwest pacific: an example from kamchatka (NE russia), Tectonophysics, 333, 75–94, doi: 10.1016/S0040-1951(00)00268-7.
Kovalenko, D. (1996), Paleomagnetism and kinematics of the central olyutorsky range, koryak highland, Geotectonics/Geotektonika, 30, 243.
Koymans, M., C. Langereis, D. Pastor-Galán, and D. Hinsbergen (2016), Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis, Computers & geosciences, 93, 127–137, doi: 10.1016/j.cageo.2016.05.007.
Koymans, M., D. Hinsbergen, D. Pastor-Galán, B. Vaes, and C. Langereis (2020), Towards FAIR paleomagnetic data management through Paleomagnetism.Org 2.0, Geochemistry, Geophysics, Geosystems, 21(2), e2019GC008,838, doi: 10.1029/2019GC008838.
Levashova, N. M., M. L. Bazhenov, and M. N. Shapiro (1997), Late cretaceous paleomagnetism of the east ranges island arc complex, kamchatka: Implications for terrane movements and kinematics of the northwest pacific, Journal of geophysical research, 102(B11), 24,843–24,857, doi: 10.1029/97jb00780.
Levashova, N. M., M. N. Shapiro, and M. L. Bazhenov (1998), Late cretaceous paleomagnetic data from the median range of kamchatka, russia: tectonic implications, Earth and planetary science letters, 163(1-4), 235–246, doi: 10.1016/s0012-821x(98)00190-3.
Li, S., E. Advokaat, D. Hinsbergen, M. Koymans, C. Deng, and R. Zhu (2017), Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of indochina and south china: Review and updated kinematic reconstruction, Earth-Science Reviews, 171, 58–77, doi: 10.1016/J.EARSCIREV.2017.05.007.
Martin, A. K. (2011), Double saloon door tectonics in the japan sea, fossa magna, and the japanese island arc, Tectonophysics, 498(1-4), 45–65, doi: 10.1016/j.tecto.2010.11.016.
McElhinny, M. W., and P. L. McFadden (1999), Paleomagnetism: Continents and Oceans, Elsevier.
Montheil, L., M. Philippon, P. Münch, P. Camps, B. Vaes, J.-J. Cornée, T. Poidras, and D. J. J. van Hinsbergen (2023),Paleomagnetic rotations in the northeastern caribbean region reveal major intraplate deformation since the eocene, Tectonics, 42(8), e2022TC007,706, doi: 10.1029/2022tc007706.
Otofuji, Y., T. Matsuda, and S. Nohda (1985), Opening mode of the japan sea inferred from the palaeomagnetism of the japan arc, Nature, 317(6038), 603–604, doi: 10.1038/317603A0.
Pierce, J., Y. Zhang, E. B. Hodgin, and N. L. Swanson-Hysell (2022), Quantifying inclination shallowing and representing flattening uncertainty in sedimentary paleomagnetic poles, Geochemistry, Geophysics, Geosystems, 23(11), e2022GC010,682, doi: 10.1029/2022gc010682.
Pisarevsky, S. A., Z. X. Li, M. G. Tetley, Y. Liu, and J. P. Beardmore (2022), An updated internet-based global paleomagnetic database, Earth-Science Reviews, 235, 104,258, doi: 10.1016/j.earscirev.2022.104258.
Rowley, D. B. (2019), Comparing paleomagnetic study means with apparent wander paths: A case study and paleomagnetic test of the greater india versus greater indian basin hypotheses, Tectonics, 38(2), 722–740, doi: 10.1029/2017tc004802.
Shapiro, M. N., and A. Solov’ev (2009), Formation of the Olyutorsky-Kamchatka foldbelt: a kinematic model, Russian Geology and Geophysics, 50, 668–681, doi: 10.1016/J.RGG.2008.10.006.
Tauxe, L. (2010), Essentials of Paleomagnetism, Univ of California Press.
Tauxe, L., and D. Kent (2004), A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?, Geophysical monograph, 145, 101–115, doi: 10.1029/145GM08.
Tauxe, L., R. Shaar, L. Jonestrask, N. L. Swanson-Hysell, R. Minnett, A. A. P. Koppers, C. G. Constable, N. Jarboe, K. Gaastra, and L. Fairchild (2016), PmagPy: Software package for paleomagnetic data analysis and a bridge to the magnetics information consortium (MagIC) database, Geochemistry, Geophysics, Geosystems, 17(6), 2450–2463, doi: 10.1002/2016gc006307.
Torsvik, T., R. Müller, R. Van der Voo, B. Steinberger, and C. Gaina (2008), Global plate motion frames: Toward a unified model, Reviews of geophysics, 46(3), doi: 10.1029/2007RG000227.
Torsvik, T., R. Van der Voo, U. Preeden, C. Mac Niocaill, B. Steinberger, P. V. Doubrovine, D. V. van Hinsbergen, M. Domeier, C. Gaina, E. Tohver, J. Meert, P. J. A. McCausland, and L. Cocks (2012), Phanerozoic polar wander, palaeogeography and dynamics, Earth-Science Reviews, 114(3–4), 325–368, doi: 10.1016/J.EARSCIREV.2012.06.007.
Vaes, B., D. Hinsbergen, and L. Boschman (2019), Reconstruction of subduction and back-arc spreading in the NW pacific and aleutian basin: Clues to causes of cretaceous and eocene plate reorganizations, Tectonics, 38(4), 1367–1413, doi: 10.1029/2018TC005164.
Vaes, B., S. Li, C. Langereis, and D. V. van Hinsbergen (2021), Reliability of palaeomagnetic poles from sedimentary rocks, Geophysical Journal International, 225(2), 1281–1303, doi: 10.1093/GJI/GGAB016.
Vaes, B., L. C. Gallo, and D. J. J. van Hinsbergen (2022), On pole position: Causes of dispersion of the paleomagnetic poles behind apparent polar wander paths, Journal of Geophysical Research, [Solid Earth], 127(4), doi: 10.1029/2022jb023953.
Vaes, B., D. V. van Hinsbergen, S. van de Lagemaat, E. van der Wiel, N. Lom, E. Advokaat, L. Boschman, L. Gallo, A. Greve, C. Guilmette, S. Li, P. Lippert, L. Montheil, A. Qayyum, and C. Langereis (2023), A global apparent polar wander path for the last 320 ma calculated from site-level paleomagnetic data, Earth-science reviews, p. 104547, doi: 10.1016/j.earscirev.2023.104547.
Veikkolainen, T., L. J. Pesonen, and D. A. D. Evans (2014), PALEOMAGIA: A PHP/MYSQL database of the precambrian paleomagnetic data, Studia Geophysica et Geodaetica, 58(3), 425–441, doi: 10.1007/s11200-013-0382-0.
Veikkolainen, T. H., A. J. Biggin, L. J. Pesonen, D. A. Evans, and N. A. Jarboe (2017), Advancing precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases, Scientific data, 4(1), 170,068, doi: 10.1038/sdata.2017.68.
Yamaji, A., H. Momose, and M. Torii (1999), Paleomagnetic evidence for miocene transtensional deformations at the eastern margin of the japan sea, Earth, Planets and Space, 51(2), 81–92, doi: 10.1186/bf03352213.