Signatures of Fluid-Rock Interactions in Shallow Parts of the San Andreas and San Gabriel Faults, Southern California
Main Article Content
Abstract
We examine deformed crystalline bedrock in the upper parts of the active San Andreas and ancient San Gabriel Faults, southern California, to 1) determine the nature and origin of micro-scale composition and geochemistry of fault-related rocks, 2) constrain the extent of fluid-rock interactions, and 3) determine the interactions between alteration, mineralization, and deformation. We used drill cores from a 470 m long inclined borehole through the steep-dipping San Gabriel Fault and from seven inclined northeast-plunging boreholes across the San Andreas Fault zone to 150 m deep to show that narrow fault cores 10 cm to 5 m wide lie within 100s m wide damage zones. Petrographic, mineralogic, whole-rock geochemical analyses and synchrotron-based X-ray fluorescence mapping of drill core and thin sections of rocks from the damage zone and narrow principal slip surfaces reveal evidence for the development of early fracture networks, with iron and other transition element mineralization and alteration along the fractures. Alteration includes clay $\pm$ chlorite development, carbonate, and zeolite mineralization in matrix and fractures and the mobility of trace and transition elements. Carbonate-zeolite mineralization filled fractures and are associated with element mobility through the crystalline rocks. Textural evidence for repeated shearing, alteration, vein formation, brittle deformation, fault slip, pressure solution, and faulted rock re-lithification indicates significant hydrothermal alteration occurred during shallow-level deformation in the fault zones. The rock assemblages show that hydrothermal conditions in active faults develop at very shallow levels where seismic energy, heat, and fluids are focused.
Article Details
References
Aben, F. M., K. Farrington, B. G. M. Boris Galvan Sanchez, T. M., S. A. Miller, T. K. Rockwell, H. Girty, G. H., G. Ostermeijer, and N. Wechsler (in press), Chemically altered Pulverized granite along the Mojave section of the SAF shows evidence for large-scale heat transfer by post-seismic fluid flow and fluid overpressure at depth, Geochemistry, Geophysics, and Geosystems, Geochemistry, geophysics, geosystems: G(3).
Anderson, J. L., R. H. Osborne, and D. F. Palmer (1983), Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone, Tectonophysics, 98, 209–251, doi: 10.1016/0040-1951(83)90296-2.
Archuleta, R. J. (1984), A faulting model for the 1979 Imperial Valley earthquake, Journal of geophysical research, 89(B6), 4559–4585, doi: 10.1029/jb089ib06p04559.
Barth, A. P., J. L. Wooden, R. M. Tosdal, and J. Morrison (1995a), Crustal contamination in the petrogenesis of a calc-alkalic rock series: Josephine Mountain intrusion, California, Geological Society of America Bulletin, 107(2), 201–212, doi: 10.1130/0016.
Barth, A. P., J. L. Wooden, R. M. Tosda, J. Morrison, and others (1995b), Origin of gneisses in the aureole of the San Gabriel anorthosite complex and implications for the Proterozoic crustal evolution of southern California, Tectonics, 14, 736–752, doi: 10.1130/0016-7606(1995)107.
Bemis, S. P., K. Scharer, and J. F. Dolan (2021), The San Andreas Fault Paleoseismic Record at Elizabeth Lake: Why are There Fewer Surface-Rupturing Earthquakes on the Mojave Section?, Bulletin of the Seismological Society of America, 111(3), 1590–1613, doi: 10.1785/0120200218.
Bergmann, U., L. Bertrand, N. P. Edwards, P. L. Manning, and R. A. Wogelius (2020), Chemical Mapping of Ancient Artifacts and Fossils with X-Ray Spectroscopy, in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, edited by E. J. Jaeschke, S. Khan, J. R. Schneider, and J. B. Hastings, pp. 2393–2455, Springer International Publishing, Cham, doi: 10.1007/978-3-030-23201-6_77.
Beyer, L. A., T. H. McCulloh, R. E. Denison, R. W. Morin, R. J. Enrico, J. A. Barron, and R. J. Fleck (2009), Post-Miocene right separation on the San Gabriel and Vasquez Creek faults, with supporting chronostratigraphy, western San Gabriel Mountains, 27 pp., U.S. Geological Survey Professional Paper, California.
Blanpied, M. L., D. A. Lockner, and J. D. Byerlee (1995), Frictional slip of granite at hydrothermal conditions, Journal of geophysical research, 100(B7), 13,045–13,064, doi: 10.1029/95jb00862.
Blenkinsop, T. G., and R. H. Sibson (1992), Aseismic fracturing and cataclasis involving reaction softening within core material from the Cajon Pass Drill Hole, Journal of geophysical research, 97(B4), 5135–5144, doi: 10.1029/90jb02285.
Blythe, A. E., M. A. House, and J. A. Spotila (2002), Low-temperature thermochronology of the San Gabriel and San Bernardino Mountains, southern California: Constraining structural evolution, in Contributions to Crustal Evolution of the Southwestern United States, vol. 365, edited by A. Barth, pp. 231–250„ Geological Society of America, Boulder, Colorado, doi: 10.1130/0-8137-2365-5.231.
Boulton, C., C. D. Menzies, V. G. Toy, J. Townend, and R. Sutherland (2017), Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand, Geochemistry, Geophysics, Geosystems, 18, 238–265„ doi: 10.1002/2016GC006588.
Bradbury, K. K., J. P. Evans, J. S. Chester, F. M. Chester, and D. L. Kirschner (2011), Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole, Earth and planetary science letters, 310(1-2), 131–144, doi: 10.1016/j.epsl.2011.07.020.
Bradbury, K. K., C. R. Davis, J. W. Shervais, S. U. Janecke, and J. P. Evans (2015), Composition, alteration, and texture of fault-related rocks from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions, Pure and Applied Geophysics, 172, 1053–1078„ doi: 10.1007/s00024-014-0896-6.
Bruhn, R. L., W. T. Parry, W. A. Yonkee, and T. Thompson (1994), Fracturing and hydrothermal alteration in normal fault zones, Pure and applied geophysics, 142(3-4), 609–644, doi: 10.1007/bf00876057.
Bryant, W. A., and Compiler (2017), Fault number 89c, San Gabriel fault zone, Newhall section, in Quaternary fault and fold database of the United States: U.S, Geological Survey.
Buscher, J. T., and J. A. Spotila (2007), Near-field response to transpression along the southern San Andreas fault, based on exhumation of the northern San Gabriel Mountains, southern California, Tectonics, 26(5), doi: 10.1029/2006tc002017.
Callahan, O. A., P. Eichhubl, and N. C. Davatzes (2020), Mineral precipitation as a mechanism of fault core growth, Journal of structural geology, 140(104156), 104,156, doi: 10.1016/j.jsg.2020.104156.
Chester, F., J. P. Evans, and R. Biegel (1993), Internal structure and weakening mechanisms of the San Andreas Fault, Journal of geophysical research, 98, 771–786, doi: 10.1029/92JB01866.
Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295(1), 199–221, doi: 10.1016/S0040-1951(98)00121-8. Cochran, E. S., Y.-G. Li, P. M. Shearer, S. Barbot, Y. Fialko, and J. E. Vidale (2009), Seismic and geodetic evidence for extensive, long-lived fault damage zones, Geology, 37(4), 315–318, doi: 10.1130/G25306A.1.
Cooperdock, E., and A. Ault (2020), Iron oxide (U–Th)/He thermochronology: New perspectives on faults, fluids, and heat, Elements, 16, 319–324, doi: 10.2138/gselements.16.5.319.
Crouch, K., and J. Evans (2023), Shallow Composition and Structure of the Upper Part of the Exhumed San Gabriel Fault, California: Implications for Fault Processes, τeκτoniκa, 1(2), 76–100, doi: 10.55575/tektonika2023.1.2.30.
Crouch, K. A. (2022), Shallow composition and structure of the San Gabriel fault, California in drill core and geophysical logs: Implications for fault slip and energetics, All Graduate Theses and Dissertations, doi: 10.26076/A629-B091.
d’Alessio, M. A., A. Blythe, and R. Bürgmann (2003), No frictional heat along the San Gabriel fault, California: Evidence from fission-track thermochronology, Geology, 31, 541–544, doi: 10.1130/0091-7613(2003)031<0541:NFHATS>2.0.CO;2.
Dibblee, T. W., Jr, and B. Carter (2002), Geologic Map of the Condor Peak Quadrangle.
Dolan, J. F., and B. D. Haravitch (2014), How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation, Earth and planetary science letters, 388, 38–47, doi: 10.1016/j.epsl.2013.11.043.
Dor, O., Y. Ben-Zion, T. K. Rockwell, and J. Brune (2006), Pulverized rocks in the Mojave section of the San Andreas Fault Zone, Earth and planetary science letters, 245(3-4), 642–654, doi: 10.1016/j.epsl.2006.03.034.
Dorsey, M. T., T. K. Rockwell, G. H. Girty, G. A. Ostermeijer, J. Browning, T. M. Mitchell, and J. M. Fletcher (2021), Evidence of hydrothermal fluid circulation driving elemental mass redistribution in an active fault zone, Journal of structural geology, 144(104269), 104,269, doi: 10.1016/j.jsg.2020.104269.
Duan, Q., X. Yang, S. Ma, J. Chen, and J. Chen (2016), Fluid–rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China, Tectonophysics, 666, 260–280, doi: 10.1016/j.tecto.2015.11.008.
Edwards, N. P., S. M. Webb, C. M. Krest, D. van Campen, P. L. Manning, R. A. Wogelius, and U. Bergmann (2018), A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2, Journal of synchrotron radiation, 25(Pt 5), 1565–1573, doi: 10.1107/S1600577518010202.
Evans, J. P. (1988), Deformation mechanisms in granitic rocks at shallow crustal levels, Journal of Structural Geology, 10(5), 437–443, doi: 10.1016/0191-8141(88)90031-4.
Evans, J. P., and F. M. Chester (1995), Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures, Journal of geophysical research, 100(B7), 13,007–13,020, doi: 10.1029/94jb02625.
Eveliina, M., I. Jussi, M.-A. Minja, L. Antero, H. Stellan, V. Mikko, S.-K. Marja, and A. Martin (2016), Behavior of Cs in Grimsel granodiorite: sorption on main minerals and crushed rock, Radiochimica Acta, 104, 575–582, doi: 10.1515/ract-2015-2574.
Farfan, G. A., A. Apprill, S. M. Webb, and C. M. Hansel (2018), Coupled X-ray Fluorescence and X-ray Absorption Spectroscopy for Microscale Imaging and Identification of Sulfur Species within Tissues and Skeletons of Scleractinian Corals, Analytical chemistry, 90(21), 12,559–12,566, doi: 10.1021/acs.analchem.8b02638.
Faulkner, D. R., A. C. Lewis, and E. H. Rutter (2003), On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367(3-4), 235–251, doi: 10.1016/s0040-1951(03)00134-3.
Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, and M. O. Withjack (2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, Journal of structural geology, 32(11), 1557–1575, doi: 10.1016/j.jsg.2010.06.009.
Ferrill, D. A., A. P. Morris, M. A. Evans, M. Burkhard, R. H. Groshong, Jr, and C. M. Onasch (2004), Calcite twin morphology: a low-temperature deformation geothermometer, Journal of structural geology, 26(8), 1521–1529, doi: 10.1016/j.jsg.2003.11.028.
Field, E. H., R. J. Arrowsmith, G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordan, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon, and Y. Zeng (2014), Uniform California earthquake rupture forecast, version 3 (UCERF3)–the time-independent model, Bulletin of the Seismological Society of America, 104(3), 1122–1180, doi: 10.1785/0120130164.
Forand, D., J. P. Evans, S. U. Janecke, and J. Jacobs (2018), Insights into fault processes and the geometry of the San Andreas fault system: Analysis of core from the deep drill hole at Cajon Pass, California, Geological Society of America bulletin, 130(1-2), 64–92, doi: 10.1130/b31681.1.
Fusseis, F., X. Xiao, C. Schrank, and F. De Carlo (2014), A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics, Journal of structural geology, 65, 1–16, doi: 10.1016/j.jsg.2014.02.005.
Gratier, J.-P., J. Richard, F. Renard, S. Mittempergher, M.-L. Doan, G. Di Toro, J. Hadizadeh, and A.-M. Boullier (2011), Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth, Geology, 39(12), 1131–1134, doi: 10.1130/g32073.1.
Hauksson, E., and M.-A. Meier (2019), Applying depth distribution of seismicity to determine Thermo-mechanical properties of the seismogenic crust in southern California: Comparing lithotectonic blocks, Pure and applied geophysics, 176(3), 1061–1081, doi: 10.1007/s00024-018-1981-z.
Hernandez, J. L. (2011), Preliminary Geologic Map of the Lake Hughes 7.5’ Quadrangle.
Holdsworth, R. E., E. W. E. van Diggelen, C. J. Spiers, J. H. P. de Bresser, R. J. Walker, and L. Bowen (2011), Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California, Journal of structural geology, 33(2), 132–144, doi: 10.1016/j.jsg.2010.11.010.
Isaacs, A. J., J. P. Evans, P. T. Kolesar, and T. Nohara (2008), Composition, microstructures, and petrophysics of the Mozumi fault, Japan: In situ analyses of fault zone properties and structure in sedimentary rocks from shallow crustal levels, Journal of geophysical research, 113(B12), doi: 10.1029/2007jb005314.
Jefferies, S. P., R. E. Holdsworth, C. A. J. Wibberley, T. Shimamoto, C. J. Spiers, A. R. Niemeijer, and G. E. Lloyd (2006), The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan, Journal of Structural Geology, 28(2), 220–235, doi: 10.1016/j.jsg.2005.10.008.
Jenne, E. (1968), Controls on Mn, Fe, co, Ni, cu, and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides, Advances in inorganic chemistry, pp. 337–387, doi: 10.1021/BA-1968-0073.CH021.
Jeppson, T. N., and H. J. Tobin (2015), San Andreas fault zone velocity structure at SAFOD at core, log, and seismic scales, Journal of geophysical research. Solid earth, 120(7), 4983–4997, doi: 10.1002/2015jb012043.
Jeppson, T. N., K. K. Bradbury, and J. P. Evans (2010), Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure, Journal of geophysical research, 115(B12), doi: 10.1029/2010jb007563.
Jeppson, T. N., D. A. Lockner, N. M. Beeler, and D. E. Moore (2023), Time-dependent weakening of granite at hydrothermal conditions, Geophysical research letters, 50(21), 2023 105,517„ doi: 10.1029/2023gl105517.
Jiang, S.-Y., R.-C. Wang, X.-S. Xu, and K.-D. Zhao (2005), Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems, Physics and Chemistry of the Earth, Parts A/B/C, 30(17), 1020–1029, doi: 10.1016/j.pce.2004.11.004.
Kaduri, M., J.-P. Gratier, F. Renard, Z. Çakir, and C. Lasserre (2017), The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey, Journal of geophysical research. Solid earth, 122(6), 4208–4236, doi: 10.1002/2016jb013803.
Kaneko, Y., and Y. Fialko (2011), Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response, Geophysical journal international, 186(3), 1389–1403, doi: 10.1111/j.1365-246x.2011.05117.x.
Kelly, S. D., D. Hesterberg, and B. Ravel (2008), Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy, in Methods of Soil Analysis Part 5—Mineralogical Methods, 5.5, edited by A. L. Ulery and L. R. Drees, Soil Science Society of America.
Lachenbruch, A. H. (1986), Simple models for the estimation and measurement of frictional heating by an earthquake, Tech. rep., US Geological Survey.
LADWP (2019), Final Report of San Andreas Coring Operation Near Elizabeth Lake Tunnel, California, Tech. rep., Los Angeles Department of Water and Power (LADWP), California, doi: 10.17605/OSF.IO/2VN6X.
Lindvall, S., S. Kerwin, C. Heron, C. A. Davis, J. Tyson, J. Chestnut, K. Mass, M. Farr, K. Scharer, and D. McPhillips (2018), Characterizing the Los Angeles aqueduct crossing of the San Andreas fault for improved earthquake resilience, in 11th National Conference on Earthquake Engineering.
Marchandon, M., J. Hollingsworth, and M. Radiguet (2021), Origin of the shallow slip deficit on a strike slip fault: Influence of elastic structure, topography, data coverage, and noise, Earth and planetary science letters, 554(116696), 116,696, doi: 10.1016/j.epsl.2020.116696.
Marone, C., and D. M. Saffer (2007), Fault Friction and the Upper Transition From Seismic to Aseismic Faulting, in The Seismogenic Zone of Subduction Thrust Faults, 346–369, pp., Columbia University Press.
Marone, C., and C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophysical research letters, 15(6), 621–624, doi: 10.1029/gl015i006p00621.
Mathurin, F., H. Drake, E. Tullborg, T. Berger, P. Peltola, B. Kalinowski, and M. Åström (2014), High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock – Influence of groundwater origin and secondary minerals, Geochimica et cosmochimica acta, 132, 187–213, doi: 10.1016/J.GCA.2014.02.001.
Mitchell, T. M., and D. R. Faulkner (2009), The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, Journal of structural geology, 31(8), 802–816, doi: 10.1016/j.jsg.2009.05.002.
Moore, D. E., and M. J. Rymer (2012), Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD), Journal of structural geology, 38, 51–60, doi: 10.1016/j.jsg.2011.11.014.
Moser, A. C., J. P. Evans, A. K. Ault, S. U. Janecke, and K. K. Bradbury (2017), (U–Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite mineralization in the Mecca Hills, southernmost San Andreas Fault zone, Earth and planetary science letters, 476, 87–99, doi: 10.1016/j.epsl.2017.07.039.
Mulholland, W. (1918), Earthquakes in their relation to the Los Angeles aqueduct, Bulletin of the Seismological Society of America, 8, 13–19, doi: 10.1785/bssa0080010013.
Nevitt, J. M., B. A. Brooks, R. D. Catchings, M. R. Goldman, T. L. Ericksen, and C. L. Glennie (2020), Mechanics of near-field deformation during co- and post-seismic shallow fault slip, Scientific reports, 10(1), 5031, doi: 10.1038/s41598-020-61400-9.
Nicholson, K., and M. Eley (1997), Geochemistry of manganese oxides: metal adsorption in freshwater and marine environments, Geological Society special publication, 119(1), 309–326, doi: 10.1144/gsl.sp.1997.119.01.20.
Niemeijer, A., G. Di Toro, W. A. Griffith, A. Bistacchi, S. A. F. Smith, and S. Nielsen (2012), Inferring earthquake physics and chemistry using an integrated field and laboratory approach, Journal of structural geology, 39, 2–36, doi: 10.1016/j.jsg.2012.02.018.
Niemeijer, A. R., C. Boulton, V. G. Toy, J. Townend, and R. Sutherland (2016), Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation, Journal of geophysical research. Solid earth, 121(2), 624–647, doi: 10.1002/2015JB012593.
Nourse, J. (2002), Middle Miocene reconstruction of the central and eastern San Gabriel Mountains, southern California, with implications for evolution of the San Gabriel fault and Los Angeles basin, Geological Society of America Special Paper, 365, 161–185, doi: 10.1130/0-8137-2365-5.161.
O’Hara, K. (1992), Major- and trace-element constraints on the petrogenesis of a fault-related pseudotachylyte, western Blue Ridge province, North Carolina, Tectonophysics, 204(3), 279–288, doi: 10.1016/0040-1951(92)90312-T.
Ostermeijer, G. A., F. M. Aben, T. M. Mitchell, T. K. Rockwell, M. Rempe, and K. Farrington (2022), Evolution of co-seismic off-fault damage towards pulverisation, Earth and planetary science letters, 579(117353), 117,353, doi: 10.1016/j.epsl.2021.117353.
Powell, R. E. (1993), Chapter 1: Balanced palinspastic reconstruction of pre-late Cenozoic paleogeology, southern California: Geologic and kinematic constraints on evolution of the San Andreas fault system, Geological Society of America Memoirs, 178, 1–106, doi: 10.1130/MEM178-P1.
Powell, R. E., and R. J. Weldon, II (1992), EVOLUTION OF THE SAN ANDREAS FAULT, Annual Review of Earth and Planetary Sciences, 20(Volume 20, 1992), 431–468, doi: 10.1146/annurev.ea.20.050192.002243.
Renard, F., B. Cordonnier, D. K. Dysthe, E. Boller, P. Tafforeau, and A. Rack (2016), A deformation rig for synchrotron microtomography studies of geomaterials under conditions down to 10 km depth in the Earth, Journal of synchrotron radiation, 23(Pt 4), 1030–1034, doi: 10.1107/S1600577516008730.
Rice, J. R., and S. T. Tse (1986), Dynamic motion of a single degree of freedom system following a rate and state dependent friction law, Journal of geophysical research, 91(B1), 521–530, doi: 10.1029/jb091ib01p00521.
Richard, J., J.-P. Gratier, M.-L. Doan, A.-M. Boullier, and F. Renard (2014), Rock and mineral transformations in a fault zone leading to permanent creep: Interactions between brittle and viscous mechanisms in the San Andreas Fault, Journal of geophysical research. Solid earth, 119(11), 8132–8153, doi: 10.1002/2014jb011489.
Rollinson, H. R., H. Rollinson, and V. Pease (2021), Using Geochemical Data: To Understand Geological Processes, Cambridge University Press.
Ross, D. C. (1984), Possible Correlations of basement rocks across the San Andreas, San Gregorio-Hosgri, and Rinconada-Reliz-King City Faults, U.S. Geological Survey Professional Paper, California.
Roten, D., K. B. Olsen, and S. M. Day (2017), Off-fault deformations and shallow slip deficit from dynamic rupture simulations with fault zone plasticity, Geophysical research letters, 44(15), 7733–7742, doi: 10.1002/2017gl074323.
Rowe, C. D., and W. A. Griffith (2015), Do faults preserve a record of seismic slip: A second opinion, Journal of structural geology, 78, 1–26, doi: 10.1016/j.jsg.2015.06.006.
Rumbiak, U., L. C-K., R. Al Furqan, M. Rosana, E. Yuningsih, B. Tsikouras, E. Ifandi, A. I. Malik, and H. Chen (2021), Geology, alteration geochemistry, and exploration geochemical mapping of the Ertsberg Cu-Au-Mo district in Papua, Indonesia, Journal of Geochemical Exploration, 232.
Scharer, K., and A. Streig (2019), The San Andreas fault system: Complexities along a major transform fault system and relation to earthquake hazards, in Transform Plate Boundaries and Fracture Zones, edited by J. C. Duarte, pp. 249–269, Elsevier, doi: 10.1016/b978-0-12-812064-4.00010-4.
Schleicher, A. M., S. N. Tourscher, B. A. Pluijm, and L. N. Warr (2009), Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole, Journal of Geophysical Research, [Solid Earth], 114, B04202, doi: 10.1029/2008JB006092.
Scholz, C. H. (2019), The Mechanics of Earthquakes and Faulting, 3rd ed., 493 pp., Cambridge University Press.
Schulz, S. E., and J. P. Evans (1998), Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid–rock interaction, and fault morphology, Tectonophysics, 295(1-2), 223–244, doi: 10.1016/s0040-1951(98)00122-x.
Schulz, S. E., and J. P. Evans (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, Journal of structural geology, 22(7), 913–930, doi: 10.1016/s0191-8141(00)00019-5.
Scott, C., J. Champenois, Y. Klinger, E. Nissen, T. Maruyama, T. Chiba, and R. Arrowsmith (2019), The 2016 M7 Kumamoto, Japan, earthquake slip field derived from a joint inversion of differential lidar topography, optical correlation, and InSAR surface displacements, Geophysical research letters, 46(12), 6341–6351, doi: 10.1029/2019gl082202.
Shipton, Z. K. E., J. P. Abercrombie, R.e., and E. E. Brodsky (2006), The missing sinks: slip localization in, in Earthquakes: Radiated Energy and the Physics of Faulting, edited by R. Abercrombie, A. McGarr, G. Toro, and H. Kanamori, p. 217–222, American Geophysical Union Monograph, Washington, DC.
Shreedharan, S., D. Saffer, L. M. Wallace, and C. Williams (2023), Ultralow frictional healing explains recurring slow slip events, Science (New York, N.Y.), 379(6633), 712–717, doi: 10.1126/science.adf4930.
Silver, L. T., and E. W. James (1988), Geologic setting and lithologic column of the Cajon Pass Deep Drillhole, Geophysical research letters, 15(9), 941–944, doi: 10.1029/gl015i009p00941.
Smith, S. A. F., A. Bistacchi, T. M. Mitchell, S. Mittempergher, and G. Di Toro (2013), The structure of an exhumed intraplate seismogenic fault in crystalline basement, Tectonophysics, 599, 29–44, doi: 10.1016/j.tecto.2013.03.031.
Spotila, J. A., M. A. House, A. E. Blythe, N. A. Niemi, and G. C. Bank (2002), Controls on the erosion and geomorphic evolution of the San Bernardino and San Gabriel Mountains, southern California, in Contributions to Crustal Evolution of the Southwestern United States, edited by A. Barthh, pp. 205–230„ Geological Society of America, southern California, doi: 10.1130/0-8137-2365-5.205.
Studnicky, C. (2021), Constraining Deformation Mechanisms of Fault Damage Zones: A Case Study of the Shallow San Andreas Fault at Elizabeth Lake, Southern California, Ph.D. thesis, Utah State University, Utah, USA.
Sutherland, M., J. R. Keaton, and C. Heron (2013), Correlating surface geology with 1913-vintage as-built geology across the San Andreas fault for seismic enhancement of the Elizabeth Tunnel, Los Angeles Aqueduct, Geological Society of America. Programs with Abstracts, 45(6), 23.
Tayyebi, A., J. Telling, K. Hudnut, C. G. Davis, and C. (2017), 100 Years of accumulated deformation at depth observed in the Elizabeth Lake Tunnel, Abstract G43C-04, American Geophysical Union Fall Meeting Abstracts, southern San Andreas Fault.
Tenthorey, E., and S. F. Cox (2006), Cohesive strengthening of fault zones during the interseismic period: An experimental study, Journal of Geophysical Research: Solid Earth, 111(B9), doi: 10.1029/2005JB004122.
Townend, J. (2017), Petrophysical, geochemical, and hydrological evidence for extensive fracture-mediated fluid and heat transport in the Alpine Fault’s hanging-wall damage zone, Geochemistry, Geophysics, Geosystems, 18, 4709–4732, doi: 10.1002/2017GC007202.
Turcotte, D., P. Tag, and R. Cooper (1980), A steady state model for the distribution of stress and temperature on the San Andreas Fault, Journal of geophysical research, 85, 6224–6230, doi: 10.1029/JB085IB11P06224.
Utada, M. (2001), Zeolites in Burial Diagenesis and Low-grade Metamorphic rocks, Reviews in mineralogy and geochemistry, 45(1), 277–304, doi: 10.2138/rmg.2001.45.9.
Wallace, R. E. (1949), Structure of a portion of the San Andreas rift in southern California, Geological Society of America bulletin, 60(4), 781, doi: 10.1130/0016-7606(1949)60[781:soapot]2.0.co;2.
Webb, S. M. (2011), The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software, Amer, Insti Phys. Conf, p. 196–199, doi: 10.1063/1.3625338.
Wechsler, N., E. E. Allen, T. K. Rockwell, G. Girty, J. S. Chester, and Y. Ben-Zion (2011), Characterization of pulverized granitoids in a shallow core along the San Andreas Fault, Littlerock, CA, Geophysical journal international, 186(2), 401–417, doi: 10.1111/j.1365-246x.2011.05059.x.
Weisenberger, T., and K. Bucher (2010), Zeolites in fissures of granites and gneisses of the Central Alps, Journal of metamorphic geology, 28(8), 825–847, doi: 10.1111/j.1525-1314.2010.00895.x.
Wibberley, C., G. Yielding, and G. Di Toro (2008), Recent advances in the understanding of fault zone internal structure: a review, Geological Society of London Special Publication, 299, 33–35, doi: 10.1144/SP299.2.
Williams, R. T., C. D. Rowe, K. Okamoto, H. M. Savage, and E. Eves (2021), How fault rocks form and evolve in the shallow San Andreas fault, Geochemistry, geophysics, geosystems: G(3), 22(11), 2021 010,092, doi: 10.1029/2021gc010092.
Xu, X., X. Tong, D. T. Sandwell, C. W. D. Milliner, J. F. Dolan, J. Hollingsworth, S. Leprince, and F. Ayoub (2016), Refining the shallow slip deficit, Geophysical journal international, 204(3), 1843–1862, doi: 10.1093/gji/ggv563.
Yerkes, R. F., and R. H. Campbell (2005), Preliminary Geologic Map of the Los Angeles 30’ x 60’ Quadrangle, Southern California.
Zhao, D., C. Qu, R. Bürgmann, and X. Shan (2024), Characterizing Deep, Shallow, and Surface Fault Zone Deformation of the 2021 Mw 7.4 Maduo, China, Earthquake, Seismological Research Letters, 95(1), 277–287, doi: 10.1785/0220230115.
Zielke, O., J. R. Arrowsmith, L. G. Ludwig, and S. O. Akciz (2010), Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault: Science, 327, 1119–1122„ doi: 10.1126/science.1182781.