Quantitative Analysis of Natural Fracture Networks in Maastrichtian Chalk: Insights from a 7,000 m2 Digital Outcrop Model of the Rørdal Quarry, Denmark

Main Article Content

Tala Maria Aabø
Simon John Oldfield
Lars Stemmerik
Lars Nielsen

Abstract

This study presents a comprehensive analysis of over 27,400 individual fractures from a digital outcrop model (DOM) of Maastrichtian-age chalk in the Rørdal Quarry, northern Jutland, Denmark. The extensive dataset, covering approximately 7,000 square meters, provides a detailed mapping of fracture networks representing a more extensive and continuous area than traditional scanlines and smaller aerial sampling methods. Analysis reveals significant spatial variations in fracture orientations and lengths, influenced by local fault systems and regional tectonics within the Sorgenfrei-Tornquist Zone (STZ). The resulting fracture network supports anisotropic fluid flow, with NE-oriented extensional fractures serving as primary pathways and NW-NNW and NNE-oriented shear fractures enhancing connectivity. Comparisons with other Danish chalk quarries, such as Sigerslev, Hillerslev, and Nye Kløv, highlight both similarities in regional trends and local variations due to factors like salt tectonics. The fractures in Rørdal exhibit a log-normal spacing distribution across the quarry, indicating a regularly spaced pattern. These findings underscore the potential of using outcrop analogues to inform subsurface models, particularly for predicting anisotropic fluid flow. However, careful consideration is required when applying outcrop data, ensuring that variations in fracture connectivity, stress regimes, and scale-dependent characteristics are accurately integrated to optimize carbon storage strategies and other subsurface applications.

Article Details

How to Cite
Aabø, T. M., Oldfield, S. J., Stemmerik, L., & Nielsen, L. (2025). Quantitative Analysis of Natural Fracture Networks in Maastrichtian Chalk: Insights from a 7,000 m2 Digital Outcrop Model of the Rørdal Quarry, Denmark. τeκτoniκa, 3(1), 31–45. https://doi.org/10.55575/tektonika2025.3.1.62
Section
Articles

References

Aabø, T. M., J. S. Dramsch, C. L. Würtzen, S. Seyum, and M. Welch (2020), An integrated workflow for fracture characterization in chalk reservoirs, applied to the Kraka Field, Marine and Petroleum Geology, 112(104065), 104,065, doi: 10.1016/j.marpetgeo.2019.104065.

Aabø, T. M., S. J. Oldfield, H. Yuan, J. Kammann, E. V. Sørensen, L. Stemmerik, and L. Nielsen (2023), Geomechanical controls on fracture development in chalk and marl in the Danish North Sea: Understanding and predicting fracture systems, Springer International Publishing, doi: 10.1007/978-3-031-35327-7.

Anderson, J., and R. Thunvik (1986), Predicting mass transport in discrete fracture networks with the aid of geometrical field data, Water Resources Research, 22, 1941–1950, doi: 10.1029/WR022i013p01941.

Andreo, B., J. Vías, J. J. Durán, P. Jiménez, J. A. López-Geta, and F. Carrasco (2008), Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain, Hydrogeology Journal, 16(5), 911–925, doi: 10.1007/s10040-008-0274-5.

Bisdom, K., H. M. Nick, and G. Bertotti (2017), An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks, Computers & Geosciences, 103, 21–35, doi: 10.1016/j.cageo.2017.02.019.

Bonnet, E., O. Bour, N. E. Odling, P. Davy, I. Main, P. Cowie, and B. Berkowitz (2001), Scaling of fractures in geological media, Reviews of Geophysics, 39(3), 347–383, doi: 10.1029/1999RG000074.

Bonto, M., M. J. Welch, M. Lüthje, S. I. Andersen, M. J. Veshareh, F. Amour, A. Afrough, R. Mokhtari, M. R. Hajiabadi, M. R. Alizadeh, C. N. Larsen, and H. M. Nick (2021), Challenges and enablers for large-scale CO2 storage in chalk formations, Earth-Science Reviews, 222(103826), 103,826, doi: 10.1016/j.earscirev.2021.103826.

Boulton, G. S., and P. Caban (1995), Groundwater flow beneath ice sheets: Part II — Its impact on glacier tectonic structures and moraine formation, Quaternary Science Reviews, 14(6), 563–587, doi: 10.1016/0277-3791(95)00058-w.

Cawood, A. J., C. E. Bond, J. A. Howell, R. W. H. Butler, and Y. Totake (2017), LIDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models, Journal of Structural Geology, 98, 67–82, doi: 10.1016/j.jsg.2017.04.004.

Egebjerg Mogensen, T., and J. A. Korstgård (2003), Intra-cratonic dextral transtension and inversion of the southern Kattegat on the southwest margin of Baltica—Seismostratigraphy and structural development, Tech. rep., SGU Research Paper C 832.

Erlström, M., and U. Sivhed (1981), Intra-cratonic dextral transtension and inversion of the southern Kattegat on the southwest margin of Baltica—Seismostratigraphy and structural development, Tech. rep., SGU Research Paper C 832.

Frykman, P. (2001), Spatial variability in petrophysical properties in Upper Maastrichtian chalk outcrops at Stevns Klint, Denmark, Marine and Petroleum Geology, 18(10), 1041–1062, doi: 10.1016/s0264-8172(01)00043-5.

GEUS (2023), GEUS, https://www.geus.dk, accessed: 2025-1-20.

Gim, D. (2016), CloudCompare: 3D point cloud and mesh processing software.

Healy, D., R. E. Rizzo, D. G. Cornwell, N. J. C. Farrell, H. Watkins, N. E. Timms, E. Gomez-Rivas, and M. Smith (2017), FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns, Journal of Structural Geology, 95, 1–16, doi: 10.1016/j.jsg.2016.12.003.

Howell, J. A., A. W. Martinius, and T. R. Good (2014), The application of outcrop analogues in geological modelling: a review, present status and future outlook, Geological Society Special Publication, 387 (1), 1–25, doi: 10.1144/sp387.12.

Jakobsen, F., and L. Madsen (1996), Report no. 10 Chalk outcrops, North Jutland, Denmark, Tech. rep., Joint Chalk Research Program IV.

Jakobsen, F., and L. Madsen (1997), Faults and joints in chalk, Denmark, Tech. rep., Interim guide to fracture interpretation and flow modelling in fractured reservoirs.

Madsen, L. (1995), Faults and joints in chalk, Denmark, Tech. rep., Interim guide to fracture interpretation and flow modelling in fractured reservoirs.

Nielsen, L., L. O. Boldreel, T. M. Hansen, H. Lykke-Andersen, L. Stemmerik, F. Surlyk, and H. Thybo (2011), Integrated seismic analysis of the Chalk Group in eastern Denmark—Implications for estimates of maximum palaeo-burial in southwest Scandinavia, Tectonophysics, 511(1-2), 14–26, doi: 10.1016/j.tecto.2011.08.010.

Odling, N. E., P. Gillespie, B. Bourgine, C. Castaing, J. P. Chiles, N. P. Christensen, E. Fillion, A. Genter, C. Olsen, L. Thrane, R. Trice, E. Aarseth, J. J. Walsh, and J. Watterson (1999), Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs, Petroleum Geoscience, 5(4), 373–384, doi: 10.1144/petgeo.5.4.373.

Ortega, O. J., R. A. Marrett, and S. E. Laubach (2006), A scale-independent approach to fracture intensity and average spacing measurement, AAPG Bulletin, 90(2), 193–208, doi: 10.1306/08250505059.

Petrella, E., D. Aquino, F. Fiorillo, and F. Celico (2015), The effect of low-permeability fault zones on groundwater flow in a compartmentalized system. Experimental evidence from a carbonate aquifer (Southern Italy): The effect of low-permeability fault zones on groundwater flow, Hydrological Processes, 29(6), 1577–1587, doi: 10.1002/hyp.10294.

Rizzo, R. E., D. Healy, and L. De Siena (2017), Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling, Journal of Structural Geology, 95, 17–31, doi: 10.1016/j.jsg.2016.12.005.

Rosenbom, A. E., and P. R. Jakobsen (2005), Infrared thermography and fracture analysis of preferential flow in chalk, Vadose Zone Journal, 4(2), 271–280, doi: 10.2136/vzj2004.0074.

Thiele, S. T., L. Grose, A. Samsu, S. Micklethwaite, S. A. Vollgger, and A. R. Cruden (2017), Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data, Solid Earth, 8(6), 1241–1253, doi: 10.5194/se-8-1241-2017.

Thrane, L., and K. Zinck-Jørgensen (1997), Faults and joints in chalk, Denmark: The Thisted Dome, Tech. rep., Geological Survey of Denmark and Greenland (GEUS).

Watkins, H., C. E. Bond, D. Healy, and R. W. H. Butler (2015), Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop, Journal of Structural Geology, 72, 67–82, doi: 10.1016/j.jsg.2015.02.001.

Welch, M. J., M. Lüthje, and S. J. Oldfield (2020), Modelling the evolution of natural fracture networks: Methods for simulating the nucleation, propagation and interaction of layer-bound fractures, Springer International Publishing, doi: 10.1007/978-3-030-52414-2.

Zhang, B., T. Guo, M. Chen, J. Wang, J. Cao, H. Wang, and Z. Qu (2024), Effect of bedding planes and property contrast between layers on the propagation mechanism of hydraulic fracture height in shale reservoirs, Computers and Geotechnics, 175(106715), 106,715, doi: 10.1016/j.compgeo.2024.106715.

Ziegler, P. A. (1990), Geological Atlas of Western and Central Europe, 2nd edition, 239 pp., Shell Internationale Petroleum Maatschappij B.V.