Can Pseudotachylytes Form via Fracture-Induced Decompression Melting Under Hydrous Conditions?
Main Article Content
Abstract
Frictional rock sliding and resultant shear heating along a fault plane are proposed as the necessary conditions to generate earthquake-related pseudotachylytes. However, frictional melting alone is energy expensive, requiring large temperature increases of several hundreds to thousands of degrees. Using the example of the pseudotachylyte structures of the Balmuccia Peridotite Massif (Ivrea-Verbano Zone, Alps, Italy), a minimum temperature increase of up to ~540°C for frictional melting has been proposed under isobaric and anhydrous conditions. Such conditions are however inconsistent with the moderate temperature increases, of up to~400°C, and diminishing pressures, less than 0.7 GPa, required to form the observed A-type pseudotachylyte structures, with ultramafic composition corresponding to the melting of specific mineral phases as a function of Carboniferous Period pressure and temperature conditions. Here we show that pseudotachylytes could be produced by fracture-induced decompression melting under hydrous conditions, that favor the formation of immiscible liquids derived from melting Al-Cr spinel and orthopyroxene with suspended clinopyroxene minerals in this immiscible melt. We propose thermodynamic calculations that constrain phase stability in the pressure-temperature space of the Balmuccia lherzolite under both anhydrous and hydrous conditions (0.5 to 1 wt.% H2O). We illustrate that the Al-Cr spinel+orthopyroxene composition of the pseudotachylyte is consistent with lower pressure conditions than those of the initial peridotite prior to fracturing. These thermodynamic calculations help determine the pressure-temperature path of pseudotachylyte formation, not only favored by frictional heating but also by pressure drop (0.3--0.9 GPa) following dilation related to rock fracturing. Our results call for a reassessment of the origin of many pseudotachylytes formed in the lower crust and upper mantle. We show that fracture-induced decompression melting under hydrous conditions can be a viable mechanism that assists frictional melting by reducing the temperature rise from ambient temperature to melting temperature by 18% to 74%. A similar process may be significant in producing other pseudotachylytes during tectonic movement of lithospheric blocks in the deep crust and upper mantle.
Article Details
References
Albarede, F., and A. Provost (1977), Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis, Computers & geosciences, 3(2), 309–326, https://doi.org/10.1016/0098-3004(77)90007-3.
Aldrighetti, S., G. Pennacchioni, and G. Di Toro (2025), Earthquake dynamics from pseudotachylyte microstructure, Earth and planetary science letters, 663(119424), 119,424, https://doi.org/10.1016/j.epsl.2025.119424.
Allen, A. (1979), Mechanism of frictional fusion in fault zones, Journal of structural geology, 1, 231–243, https://doi.org/10.1016/0191-8141(79)90042-7.
Andersen, T. B., and H. Austrheim (2006), Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica, Earth and planetary science letters, 242(1-2), 58–72, https://doi.org/10.1016/j.epsl.2005.11.058.
Armstrong, J. T. (1988), Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo ZAF and ψ (ρz) procedures, in Microbeam analysis, edited by D. E. Newbury, pp. 239–246, San Francisco Press Inc, San Francisco, CA.
Austrheim, H., and T. B. Andersen (2004), Pseudotachylytes from Corsica: fossil earthquakes from a subduction complex, Terra nova, 16, 193–197, https://doi.org/10.1111/j.1365-3121.2004.00551.x.
Baker, D. R. (1991), Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 106(4), 462–473, https://doi.org/10.1007/bf00321988.
baron de Fourier, J. B. J. (1822), Théorie analytique de la chaleur, Firmin Didot, Paris.
Berno, D., R. Tribuzio, A. Zanetti, and C. Hémond (2020), Evolution of mantle melts intruding the lowermost continental crust: constraints from the Monte Capio–Alpe Cevia mafic–ultramafic sequences (Ivrea–Verbano Zone, northern Italy), Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 175(1), 2, https://doi.org/10.1007/s00410-019-1637-8.
Bjornerud, M., and J. F. Magloughlin (2004), Pressure-related feedback processes in the generation of pseudotachylytes, Journal of structural geology, 26, 2317–2323, https://doi.org/10.1016/J.JSG.2002.08.001.
Blackwell, D. D. (1971), The thermal structure of the continental crust, in The Structure and Physical Properties of the Earth’s Crust, Geophysical Monograph Series, vol. 14, edited by J. G. Heacock, pp. 169–184, AGU, Washington, D.C.
Bossière, G. (1991), Petrology of pseudotachylytes from the alpine fault of New Zealand, Tectonophysics, 196, 173–193, https://doi.org/10.1016/0040-1951(91)90295-4.
Bouchon, M., and P. Ihmlé (1999), Stress drop and frictional heating during the 1994 Deep Bolivia Earthquake, Geophysical research letters, 26(23), 3521–3524, https://doi.org/10.1029/1999gl005410.
Boudier, F., M. Jackson, and A. Nicolas (1984), Structural study of the Balmuccia Massif (Western Alps): A transition from mantle to lower crust, Geologie en Mijnbouw, 63, 179–188.
Bowen, N. L. (1928), The evolution of the igneous rocks, Dover Publications, Mineola, NY.
Bowen, N. L., and O. Andersen (1914), The binary system MgO-SiO 2, American journal of science, s4-37 (222), 487–500, https://doi.org/10.2475/ajs.s4-37.222.487.
Brack, P., P. Ulmer, and S. Schmid (2010), A crustal magmatic system from Earth mantle to the Permian surface: Field trip to the area of lower Valsesia and val d’Ossola (massiccio dei Laghi, Southern Alps, Northern Italy), Swiss Bulletin für angewandte Geologie, 15/2, 3–21.
Braeck, S., Y. Y. Podladchikov, and S. Medvedev (2009), Spontaneous dissipation of elastic energy by self-localizing thermal runaway, Physical review. E, Statistical, nonlinear, and soft matter physics, 80(4 Pt 2), 046,105, https://doi.org/10.1103/PhysRevE.80.046105.
Brantut, N. (2019), Dilatancy-induced fluid pressure drop during dynamic rupture: Direct experimental evidence and consequences for earthquake dynamics, arXiv [physics.geo-ph], p. 116179, https://doi.org/10.1016/j.epsl.2020.116179.
Brodie, K., and E. Rutter (1987), Deep crustal extensional faulting in the Ivrea Zone of Northern Italy, Tectonophysics, 140, 193–212, https://doi.org/10.1016/0040-1951(87)90229-0.
Brodie, K., E. Rutter, and P. Evans (1992), On the structure of the Ivrea-Verbano Zone (northern Italy) and its implications for present-day lower continental crust geometry, Terra nova, 4, 34–40, https://doi.org/10.1111/J.1365-3121.1992.TB00448.X.
Camacho, A., R. Vernon, and J. Gerald (1995), Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia, Journal of structural geology, 17, 371–383, https://doi.org/10.1016/0191-8141(94)00069-C.
Campbell, L. R., L. Menegon, A. Fagereng, and G. Pennacchioni (2020), Earthquake nucleation in the lower crust by local stress amplification, Nature communications, 11(1), 1322, https://doi.org/10.1038/s41467-020-15150-x.
Capedri, S., G. Garuti, G. Rivalenti, and A. Rossi (1977), The origin of the Ivrea-Verbano basic formation. Pyroxenitic and gabbroic mobilizates as products of the partial melting of mantle peridotite, Neues Jahrbuch für Mineralogie, Monatshefte, H4, 168–179.
Christensen, N. I. (1979), Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones, Journal of geophysical research, 84(B12), 6849–6857, https://doi.org/10.1029/jb084ib12p06849.
Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view, Journal of geophysical research, 100(B6), 9761–9788, https://doi.org/10.1029/95JB00259.
Connolly, J. A. D. (1990), Multivariable phase diagrams; an algorithm based on generalized thermodynamics, American journal of science, 290(6), 666–718, https://doi.org/10.2475/ajs.290.6.666.
Connolly, J. A. D. (2005), Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth and planetary science letters, 236(1-2), 524–541, https://doi.org/10.1016/j.epsl.2005.04.033.
Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochemistry, Geophysics, Geosystems, 10, Q10,014, https://doi.org/10.1029/2009GC002540.
Connolly, J. A. D., and K. Petrini (2002), An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions, Journal of metamorphic geology, 20(7), 697–708, https://doi.org/10.1046/j.1525-1314.2002.00398.x.
Creig, J. W. (1927), Immiscibility in silicate melts; Part II, American journal of science, 13(73), 133–154, https://doi.org/10.2475/AJS.S5-13.74.133.
Dai, W., Y. Zhou, and X. Ma (2022), Pseudotachylyte-mylonites record of transient creep from inter-seismic ductile to co-seismic rupture, Frontiers in earth science, 10(931005), 931,005, https://doi.org/10.3389/feart.2022.931005.
Dale, J., T. Holland, and R. Powell (2000), Hornblende–garnet–plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 140(3), 353–362, https://doi.org/10.1007/s004100000187.
Del Gaudio, P., G. Di Toro, R. Han, T. Hirose, S. Nielsen, T. Shimamoto, and A. Cavallo (2009), Frictional melting of peridotite and seismic slip, Journal of Geophysical Research, [Solid Earth], 114(B6), https://doi.org/10.1029/2008JB005990.
Di Toro, G., D. L. Goldsby, and T. E. Tullis (2004), Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427 (6973), 436–439, https://doi.org/10.1038/nature02249.
Di Toro, G., G. Pennacchioni, and G. Teza (2005), Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics, 402(1-4), 3–20, https://doi.org/10.1016/j.tecto.2004.10.014.
Di Toro, G., T. Hirose, S. Nielsen, G. Pennacchioni, and T. Shimamoto (2006a), Natural and experimental evidence of melt lubrication of faults during earthquakes, Science (New York, N.Y.), 311(5761), 647–649, https://doi.org/10.1126/science.1121012.
Di Toro, G., T. Hirose, and S. Nielsen (2006b), Relating high-velocity rock-friction experiments to coseismic slip in the presence of melts, GEOPHYSICAL, 170, 121–134.
Di Toro, G., G. Pennacchioni, and S. Nielsen (2009), Chapter 5 pseudotachylytes and earthquake source mechanics, in International Geophysics, International geophysics series, vol. 94, pp. 87–133, Elsevier, https://doi.org/10.1016/s0074-6142(08)00005-3.
Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto (2011), Fault lubrication during earthquakes, Nature, 471(7339), 494–498, https://doi.org/10.1038/nature09838.
Dobson, D. P., L. Montheil, J. J. Paine, and A. R. Thomson (2021), Peritectic melting of mica in fault-related pseudotachylite melts and potassium mass balance as an indicator of fluid-absent source conditions, Geochemistry, geophysics, geosystems: G(3), 22(2), e2020GC009,217, https://doi.org/10.1029/2020gc009217.
Draper, D. S., and A. D. Johnston (1992), Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 112(4), 501–519, https://doi.org/10.1007/bf00310781.
Drury, M. R., R. L. M. Vissers, D. Van der Wal, and E. H. Hoogerduijn Strating (1991), Shear localisation in upper mantle peridotites, Pure and applied geophysics, 137 (4), 439–460, https://doi.org/10.1007/bf00879044.
Dunkel, K. G., L. F. G. Morales, and B. Jamtveit (2021), Pristine microstructures in pseudotachylytes formed in dry lower crust, Lofoten, Norway, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 379(2193), 20190,423, https://doi.org/10.1098/rsta.2019.0423.
Ernst, W. (1981), Petrogenesis of eclogites and peridotites from the Western and Ligurian Alps, American Mineralogist, 66(5-6), 443–472.
Ernst, W. G. (1978), Petrochemical study of lherzolitic rocks from the western alps, Journal of petrology, 19(3), 341–392, https://doi.org/10.1093/petrology/19.3.341.
Everts, M., and J. P. Meyer (2018), Relationship between pressure drop and heat transfer of developing and fully developed flow in smooth horizontal circular tubes in the laminar, transitional, quasi-turbulent and turbulent flow regimes, International journal of heat and mass transfer, 117, 1231–1250, https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.072.
Ewing, T. A., D. Rubatto, M. Beltrando, and J. Hermann (2015), Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up: U–Pb dating of rutile from the Ivrea–Verbano Zone, Italy, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 169(4), 1–22, https://doi.org/10.1007/s00410-015-1135-6.
Fenn, P. M. (1977), The nucleation and growth of alkali feldspars from hydrous melts, The Canadian mineralogist, 15, 135–161.
Ferrand, T. P., N. Hilairet, S. Incel, D. Deldicque, L. Labrousse, J. Gasc, J. Renner, Y. Wang, H. W. Green, Ii, and A. Schubnel (2017), Dehydration-driven stress transfer triggers intermediate-depth earthquakes, Nature communications, 8(1), 15,247, https://doi.org/10.1038/ncomms15247.
Ferrand, T. P., L. Labrousse, G. Eloy, O. Fabbri, N. Hilairet, and A. Schubnel (2018), Energy balance from a mantle pseudotachylyte, Balmuccia, Italy, Journal of geophysical research. Solid earth, 123(5), 3943–3967, https://doi.org/10.1002/2017jb014795.
Ferré, E. C., A. L. Meado, and J. W. Geissman (2017), Earthquakes in the mantle? Insights from rock magnetism of pseudotachylytes, Journal of Geophysical Research, [Solid Earth], 122, 8769–8785, https://doi.org/10.1002/2017JB014618.
Fick, A. (1855), Ueber diffusion, Annalen der Physik, 170(1), 59–86, https://doi.org/10.1002/andp.18551700105.
Fleet, M. E., and Y. Pan (1995), Site preference of rare earth elements in fluorapatite, The American mineralogist, 80(3-4), 329–335, https://doi.org/10.2138/am-1995-3-414.
Fondriest, M., J. Mecklenburgh, F. X. Passelegue, G. Artioli, F. Nestola, E. Spagnuolo, M. Rempe, and G. Di Toro (2020), Pseudotachylyte alteration and the rapid fade of earthquake scars from the geological record, Geophysical research letters, 47 (22), e2020GL090,020, https://doi.org/10.1029/2020gl090020.
Garuti, G. (1977), origin Ivrea-Verbano basic formation. Microstructural data peridotites from area Sesia-Valley, Rendiconti della Società Italiana di Mineralogia e Petrografia, 33, 601–616.
Garuti, G., and R. Friolo (1979), Textural features and olivine fabrics of peridotites from the Ivrea Verbano Zone, Memorie della Società Geologica, 33, 111–125.
Giordano, D., and D. B. Dingwell (2003), Non-Arrhenian multicomponent melt viscosity: a model, Earth and planetary science letters, 208(3-4), 337–349, https://doi.org/10.1016/s0012-821x(03)00042-6.
Giordano, D., A. Mangiacapra, M. Potuzak, J. K. Russell, C. Romano, D. B. Dingwell, and A. Di Muro (2006), An expanded non-Arrhenian model for silicate melt viscosity: A treatment for metaluminous, peraluminous and peralkaline liquids, Chemical geology, 229(1-3), 42–56, https://doi.org/10.1016/j.chemgeo.2006.01.007.
Giordano, D., J. K. Russell, and D. B. Dingwell (2008), Viscosity of magmatic liquids: A model, Earth and planetary science letters, 271(1-4), 123–134, https://do i.org/10.1016/j.epsl.2008.03.038.
Grant, J. A. (1986), The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration, Economic geology, 81, 1976–1982, https://doi.org/10.2113/GSECONGEO.81.8.1976.
Grant, J. A. (2005), Isocon analysis: A brief review of the method and applications, Physics and chemistry of the earth (2002), 30(17-18), 997–1004, https://doi.org/10.1016/j.pce.2004.11.003.
Green, H. W., II, and H. Houston (1995), The mechanics of deep earthquakes, Annual review of earth and planetary sciences, 23(1), 169–213, https://doi.org/10.1146/annurev.ea.23.050195.001125.
Gresens, R. L. (1967), Composition-volume relationships of metasomatism, Chemical geology, 2, 47–65, https://doi.org/10.1016/0009-2541(67)90004-6.
Handy, M., and H. Stünitz (2002), Strain localization by fracturing and reaction weakening — a mechanism for initiating exhumation of subcontinental mantle beneath rifted margins, Geological Society special publication, 200, 387–407, https://doi.org/10.1144/GSL.SP.2001.200.01.22.
Handy, M., J. Babist, R. Wagner, C. L. Rosenberg, and M. Konrad (2005), Decoupling and its relation to strain partitioning in continental lithosphere: insight from the Periadriatic fault system (European Alps), Geological Society special publication, 243, 249–276, https://doi.org/10.1144/GSL.SP.2005.243.01.17.
Handy, M. R., L. Franz, F. Heller, B. Janott, and R. Zurbriggen (1999), Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland), Tectonics, 18(6), 1154–1177, https://doi.org/10.1029/1999tc900034.
Hartmann, G., and K. Hans Wedepohl (1993), The composition of peridotite tectonites from the Ivrea Complex, northern Italy: Residues from melt extraction, Geochimica et cosmochimica acta, 57 (8), 1761–1782, https://doi.org/10.1016/0016-7037(93)90112-a.
Hirose, T. (2005), Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes, Bulletin of the Seismological Society of America, 95(5), 1666–1673, https://doi.org/10.1785/0120040131.
Hirose, T., and T. Shimamoto (2005), Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting, Journal of geophysical research, 110(B5), B05,202, https://doi.org/10.1029/2004JB003207.
Hofmann, A. W. (1980), Diffusion in natural silicate melts: a critical review, Physics of magmatic processes, 385, 417.
Holland, T., and R. Powell (1996), Thermodynamics of order-disorder in minerals; II, Symmetric formalism applied to solid solutions, The American mineralogist, 81(11-12), 1425–1437, https://doi.org/10.2138/am-1996-11-1215.
Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, Journal of metamorphic geology, 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x.
Holland, T., and R. Powell (2003), Activity?composition relations for phases in petrological calculations: an asymmetric multicomponent formulation, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 145(4), 492–501, https://doi.org/10.1007/s00410-003-0464-z.
Hort, M. (1998), Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: Effects on nucleation, crystal growth and thermal history of the magma, Journal of petrology, 39(5), 1063–1076, https://doi.org/10.1093/petroj/39.5.1063.
Jaeger, J. C., and N. G. W. Cook (1979), Fundamentals of Rock Mechanics, third ed., Chapman and Hall, London, England.
James, T. (2001), A study of the geological structure of the Massiccio dei Laghi (Northern Italy), Ph.D. thesis, Department of Earth and Environmental Sciences, University of Manchester, United Kingdom of Great Britain and Northern Ireland.
Jamieson, H., and P. Roeder (1984), The distribution of Mg and Fe (super 2+) between olivine and spinel at 1300 degrees C, The American mineralogist, 69, 283–291.
Jarvis, P. A., M. Pistone, A. Secretan, J. D. Blundy, K. V. Cashman, H. M. Mader, and L. P. Baumgartner (2021), Crystal and volatile controls on the mixing and mingling of magmas, https://doi.org/10.1002/9781119564485.ch6.
Jin, D., S.-I. Karato, and M. Obata (1998), Mechanisms of shear localization in the continental lithosphere: inference from the deformation microstructures of peridotites from the Ivrea zone, northwestern Italy, Journal of structural geology, 20(2-3), 195–209, https://doi.org/10.1016/s0191-8141(97)00059-x.
Kanamori, H., D. L. Anderson, and T. H. Heaton (1998), Frictional melting during the rupture of the 1994 bolivian earthquake, Science (New York, N.Y.), 279(5352), 839–842, https://doi.org/10.1126/science.279.5352.839.
Karato, S.-I., M. R. Riedel, and D. A. Yuen (2001), Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes, Physics of the earth and planetary interiors, 127 (1-4), 83–108, https://doi.org/10.1016/s0031-9201(01)00223-0.
Kelemen, P. B., and G. Hirth (2007), A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature, 446(7137), 787–790, https://doi.org/10.1038/nature05717.
Kirkpatrick, J. D., and C. D. Rowe (2013), Disappearing ink: How pseudotachylytes are lost from the rock record, Journal of structural geology, 52, 183–198, https://doi.org/10.1016/j.jsg.2013.03.003.
Klötzli, U., S. Sinigoi, J. E. Quick, G. Demarchi, C. Tassinari, K. Sato, and Z. Günes (2014), Duration of igneous activity in the Sesia Magmatic System and implications for high-temperature metamorphism in the Ivrea–Verbano deep crust, Lithos, 206, 19–33, https://doi.org/10.1016/J.LITHOS.2014.07.020.
Lachenbruch, A. H., and J. H. Sass (1977), Heat flow and the thermal regime of the crust, in The Structure and Physical Properties of the Earth’s Crust, Geophysical Monograph Series, vol. 20, edited by J. G. Heacock, pp. 626–675, AGU, Washington, D.C.
Lensch, G. (1971), Die Ultramafitite der Zone von Ivrea, Annales Universitatis Saraviensis: Scientia, 9, 5–146.
Lesher, C. E., and F. J. Spera (2015), Thermodynamic and transport properties of silicate melts and magma, in The Encyclopedia of Volcanoes, 2 ed., pp. 113–141, Elsevier, https://doi.org/10.1016/b978-0-12-385938-9.00005-5.
Liang, Y., A. Schiemenz, M. A. Hesse, E. M. Parmentier, and J. S. Hesthaven (2010), High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite, Journal of geophysical research, 37, L15,306, https://doi.org/10.1029/2010GL044162.
Lin, A. (2007), Fossil earthquakes: The formation and preservation of pseudotachylytes, Lecture Notes in Earth Sciences, vol. 111, 348 pp., Springer.
Lin, A., and T. Shimamoto (1998), Selective melting processes as inferred from experimentally generated pseudotachylytes, Journal of Asian earth sciences, 16(5-6), 533–545, https://doi.org/10.1016/s0743-9547(98)00040-3.
Maddock, R. H. (1986), Partial melting of lithic porphyroclasts in fault-generated pseudotachylytes, Neues Jahrbuch für Mineralogie – Abhandlungenr, 155, 1–14.
Maddock, R. H. (1992), Effects of lithology, cataclasis and melting on the composition of fault-generated pseudotachylytes in Lewisian gneiss, Scotland, Tectonophysics, 204(3-4), 261–278, https://doi.org/10.1016/0040-1951(92)90311-s.
Magloughlin, J. F. (1989), The nature and significance of pseudotachylite from the Nason terrane, North Cascade Mountains, Washington, Journal of structural geology, 11(7), 907–917, https://doi.org/10.1016/0191-8141(89)90107-7.
Magloughlin, J. F., and J. G. Spray (1992), Frictional melting processes and products in geological materials: introduction and discussion, Tectonophysics, 204(3-4), 197–204, https://doi.org/10.1016/0040-1951(92)90307-r.
Mazzucchelli, M., G. Rivalenti, D. Brunelli, A. Zanetti, and E. Boari (2009), Formation of highly refractory dunite by focused percolation of pyroxenite-derived melt in the balmuccia peridotite massif (Italy), Journal of petrology, 50(7), 1205–1233, https://doi.org/10.1093/petrology/egn053.
McKENZIE, D., and M. J. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, Journal of petrology, 29(3), 625–679, https://doi.org/10.1093/petrology/29.3.625.
McKenzie, D., and J. Brune (1972), Melting on fault planes during large earthquakes, Geophysical journal international, 29, 65–78, https://doi.org/10.1111/j.1365-246X.1972.tb06152.x.
Menegon, L., G. Pennacchioni, N. Malaspina, K. Harris, and E. Wood (2017), Earthquakes as precursors of ductile shear zones in the dry and strong lower crust: Lower crustal earthquakes and mylonites, Geochemistry, geophysics, geosystems: G(3), 18(12), 4356–4374, https://doi.org/10.1002/2017gc007189.
Menegon, L., L. Campbell, N. Mancktelow, A. Camacho, S. Wex, S. Papa, G. Toffol, and G. Pennacchioni (2021), The earthquake cycle in the dry lower continental crust: insights from two deeply exhumed terranes (Musgrave Ranges, Australia and Lofoten, Norway), Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 379(2193), 20190,416, https://doi.org/10.1098/rsta.2019.0416.
Menegoni, N., Y. Panara, A. Greenwood, D. Mariani, A. Zanetti, and G. Hetényi (2024), Fracture network characterisation of the Balmuccia peridotite using drone-based photogrammetry, implications for active-seismic site survey for scientific drilling, Journal of rock mechanics and geotechnical engineering, 16(10), 3961–3981, https://doi.org/10.1016/j.jrmge.2024.03.012.
Michalchuk, S. P., S. Zertani, F. Renard, F. Fusseis, A. Chogani, O. Plümper, and L. Menegon (2023), Dynamic evolution of porosity in lower-crustal faults during the earthquake cycle, Journal of geophysical research. Solid earth, 128(8), e2023JB026,809, https://doi.org/10.1029/2023jb026809.
Mollo, S., and J. E. Hammer (2017), Dynamic crystallization in magmas, in Mineral reaction kinetics: Microstructures, textures, chemical and isotopic signatures, vol. 16, pp. 378–418, Mineralogical Society of Great Britain & Ireland, https://doi.org/10.1180/emu-notes.16.12.
Moris-Muttoni, B., H. Raimbourg, R. Augier, R. Champallier, and E. Le Trong (2022), The impact of melt versus mechanical wear on the formation of pseudotachylyte veins in accretionary complexes, Scientific reports, 12(1), 1529, https://doi.org/10.1038/s41598-022-05379-5.
Mysen, B. (2014), Water-melt interaction in hydrous magmatic systems at high temperature and pressure, Progress in earth and planetary science, 1(1), 4, https://doi.org/10.1186/2197-4284-1-4.
Mysen, B. O. (1988), Structure and properties of silicate melts, Developments in Geochemistry, 354 pp., Elsevier Science, London, England.
Müntener, O., P. B. Kelemen, and T. L. Grove (2001), The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 141(6), 643–658, https://doi.org/10.1007/s004100100266.
Nabelek, P., A. Whittington, and M. Sirbescu (2010), The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 160, 313–325, https://doi.org/10.1007/S00410-009-0479-1.
Ni, H., and Y. Zhang (2008), H2O diffusion models in rhyolitic melt with new high pressure data, Chemical geology, 250(1-4), 68–78, https://doi.org/10.1016/j.chemgeo.2008.02.011.
Nielsen, S., G. Toro, T. Hirose, and T. Shimamoto (2008), Frictional melt and seismic slip, Journal of geophysical research, 113, B01,308, https://doi.org/10.1029/2007JB005122.
Nüchter, J.-A. (2017), How vein sealing boosts fracture widening rates – The buckling-enhanced aperture growth mechanism for syn-tectonic veins, Tectonophysics, 694, 69–86, https://doi.org/10.1016/j.tecto.2016.11.005.
Obata, M., and S.-I. Karato (1995), Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy, Tectonophysics, 242(3-4), 313–328, https://doi.org/10.1016/0040-1951(94)00228-2.
Ogawa, M. (1987), Shear instability in a viscoelastic material as the cause of deep focus earthquakes, Journal of geophysical research, 92(B13), 13,801–13,810, https://doi.org/10.1029/jb092ib13p13801.
O’Hara, K. D., and Z. D. Sharp (2001), Chemical and oxygen isotope composition of natural and artificial pseudotachylyte: role of water during frictional fusion, Earth and planetary science letters, 184(2), 393–406, https://doi.org/10.1016/s0012-821x(00)00331-9.
Pennacchioni, G., M. Scambelluri, M. Bestmann, L. Notini, P. Nimis, O. Plümper, M. Faccenda, and F. Nestola (2024), Record of intermediate-depth subduction seismicity in a dry slab from an exhumed ophiolite, Earth and Planetary Science Letters, 548, 116,490.
Peressini, G., J. E. Quick, S. Sinigoi, A. W. Hofmann, and M. Fanning (2007), Duration of a large mafic intrusion and heat transfer in the lower crust: A SHRIMP U-Pb zircon study in the ivrea-verbano zone (western alps, Italy), Journal of petrology, 48(6), 1185–1218, https://doi.org/10.1093/petrology/egm014.
Petri, B., T. Duretz, G. Mohn, S. M. Schmalholz, G. D. Karner, and O. Müntener (2019), Thinning mechanisms of heterogeneous continental lithosphere, Earth and planetary science letters, 512, 147–162, https://doi.org/10.1016/j.epsl.2019.02.007.
Pistone, M., EIMF, J. D. Blundy, and R. A. Brooker (2016), Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 171(1), https://doi.org/10.1007/s00410-015-1218-4.
Pistone, M., L. Ziberna, G. Hetényi, M. Scarponi, A. Zanetti, and O. Müntener (2020), Joint geophysical-petrological modeling on the ivrea geophysical body beneath valsesia, Italy: Constraints on the continental lower crust, Geochemistry, geophysics, geosystems: G(3), 21(12), e2020GC009,397, https://doi.org/10.1029/2020gc009397.
Powell, R. (1978), Equilibrium thermodynamics in petrology, 284 pp., Joanna Cotler Books, New York, NY.
Quick, J. E., S. Sinigoi, and A. Mayer (1995), Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy, Geology, 23, 739–742, https://doi.org/10.1130/0091-7613(1995)023<0739:EOMPIT>2.3.CO;2.
Quick, J. E., S. Sinigoi, A. Snoke, T. Kalakay, A. Mayer, and G. Peressini (2002), Geologic map of the southern Ivrea-Verbano zone, northwestern Italy, Tech. rep., US Geological Survey, https://doi.org/10.3133/i2776.
Redler, C., T. E. Johnson, R. W. White, and B. E. Kunz (2012), Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy): IVREA ZONE METAMORPHIC FIELD GRADIENT, Journal of metamorphic geology, 30(3), 235–254, https://doi.org/10.1111/j.1525-1314.2011.00965.x.
Rivalenti, G., and M. Mazzucchelli (2000), Interaction of mantle derived magmas and crust in the IVZ and the Ivrea mantle peridotites, in Crust Mantle Interactions, edited by G. Ranalli, C. A. Ricci, and V. Trommsdorff, pp. 153–178, Siena, Italy.
Rivalenti, G., G. Garuti, and A. Rossi (1975), The origin of the Ivrea-Verbano basic formation (western Italian Alps); whole rock geochemistry, Bollettino della Società Geologica Italiana, 94, 1149–1186.
Romine, W. L., A. G. Whittington, P. I. Nabelek, and A. M. Hofmeister (2012), Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water, Bulletin of volcanology, 74(10), 2273–2287, https://doi.org/10.1007/s00445-012-0661-6.
Rutter, E., K. Brodie, and P. Evans (1993), Structural geometry, lower crustal magmatic underplating and lithospheric stretching in the Ivrea-Verbano zone, northern Italy, Journal of structural geology, 15(3-5), 647–662, https://doi.org/10.1016/0191-8141(93)90153-2.
Rutter, E., J. Khazanehdari, K. Brodie, D. Blundell, and D. Waltham (1999), Synthetic seismic reflection profile through the Ivrea zone–Serie dei Laghi continental crustal section, northwestern Italy, Geology, 27 (1), 79–82, https://doi.org/10.1130/0091-7613(1999)027<0079:SSRPTT>2.3.CO;2.
Rutter, E., K. Brodie, T. James, D. J. Blundell, and D. A. Waltham (2003), Seismic modeling of lower and mid-crustal structure as exemplified by the massiccio dei Laghi (ivrea-verbano zone and serie dei Laghi) crustal section, northwestern Italy, in Heterogeneity in the Crust and Upper Mantle, edited by J. A. Goff and K. Holliger, pp. 67–97, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4615-0103-9_3.
Rutter, E., K. Brodie, T. James, and L. Burlini (2007), Large-scale folding in the upper part of the Ivrea-Verbano zone, NW Italy, Journal of structural geology, 29(1), 1–17, https://doi.org/10.1016/j.jsg.2006.08.013.
Ryberg, T., C. Haberland, B. Wawerzinek, M. Stiller, K. Bauer, A. Zanetti, L. Ziberna, G. Hetényi, O. Müntener, M. Weber, and C. M. Krawczyk (2023), 3D imaging of the Balmuccia peridotite body (Ivrea-Verbano zone, NW-Italy) using controlled source seismic data, Geophysical journal international, 234(3), 1985–1998, https://doi.org/10.1093/gji/ggad182.
Samuelson, J., D. Elsworth, and C. Marone (2009), Shear-induced dilatancy of fluid-saturated faults: Experiment and theory, Journal of geophysical research, 114(B12), B12,404, https://doi.org/10.1029/2008jb006273.
San Gabriel, M. L., C. Qiu, D. Yu, T. Yaguchi, and J. Y. Howe (2024), Simultaneous secondary electron microscopy in the scanning transmission electron microscope with applications for in situ studies, Microscopy (Oxford, England), 73(2), 169–183, https://doi.org/10.1093/jmicro/dfae007.
Scambelluri, M., G. Pennacchioni, M. Gilio, M. Bestmann, O. Plümper, and F. Nestola (2017), Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release, Nature geoscience, 10(12), 960–966, https://doi.org/10.1038/s41561-017-0010-7.
Schaltegger, U., and P. Brack (2007), Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps, International journal of earth sciences, 96(6), 1131–1151, https://doi.org/10.1007/s00531-006-0165-8.
Schmid, R., and B. J. Wood (1976), Phase relationships in granulitic metapelites from the Ivrea-Verbano zone (Northern Italy), Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 54(4), 255–279, https://doi.org/10.1007/bf00389407.
Schmid, S. M., H. Aebli, F. Heller, and A. Zingg (1989), The role of the Periadriatic Line in the tectonic evolution of the Alps, Geological Society special publication, 45, 153–171, https://doi.org/10.1144/GSL.SP.1989.045.01.08.
Schnetger, B. (1994), Partial melting during the evolution of the amphibolite- to granulite-facies gneisses of the Ivrea Zone, northern Italy, Chemical geology, 113(1-2), 71–101, https://doi.org/10.1016/0009-2541(94)90006-X.
Shand, S. J. (1916), The pseudotachylyte of Parijs (orange free state), and its relation to ‘trap-shotten gneiss’ and ‘flinty crush-rock’, Quarterly Journal of the Geological Society, 72(1-4), 198–221, https://doi.org/10.1144/gsl.jgs.1916.072.01-04.12.
Shervais, J. W. (1979), Thermal emplacement model for the alpine lherzolite massif at balmuccia, Italy, Journal of petrology, 20(4), 795–820, https://doi.org/10.1093/petrology/20.4.795.
Shervais, J. W., and S. B. Mukasa (1991), The Balmuccia Orogenic Lherzolite Massif, Italy, Journal of petrology, Special_Volume(2), 155–174, https://doi.org/10.1093/petrology/special_volume.2.155.
Shimamoto, T., and A. Tsutsumi (1994), A new rotary-shear high-speed frictional testing machine: Its basic design and scope of research, Journal of Tectonic Research Group of Japan, 39, 65–78.
Sibson, R. (1975), Generation of pseudotachylyte by ancient seismic faulting, Geophysical journal international, 43, 775–794, https://doi.org/10.1111/j.1365-246X.1975.tb06195.x.
Sibson, R. (1980), Power dissipation and stress levels on faults in the upper crust, Journal of Geophysical Research, [Solid Earth], 85, 6239–6247, https://doi.org/10.1029/JB085iB11p06239.
Sinigoi, S., P. Comin-Chiaramonti, G. Demarchi, and F. Siena (1983), Differentiation of partial melts in the mantle: Evidence from the Balmuccia peridotite, Italy, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 82(4), 351–359, https://doi.org/10.1007/bf00399712.
Skrotzki, W., A. Wedel, K. Weber, and W. Müller (1990), Microstructure and texture in lherzolites of the Balmuccia massif and their significance regarding the thermomechanical history, Tectonophysics, 179, 227–251, https://doi.org/10.1016/0040-1951(90)90292-G.
Skrotzki, W., W. Müller, and K. Weber (1991), Exsolution phenomena in pyroxenes from the Balmuccia Massif, NW-Italy, European journal of mineralogy, 3, 39–62, https://doi.org/10.1127/EJM/3/1/0039.
Smye, A. J., L. L. Lavier, T. Zack, and D. F. Stockli (2019), Episodic heating of continental lower crust during extension: A thermal modeling investigation of the Ivrea-Verbano Zone, Earth and planetary science letters, 521, 158–168, https://doi.org/10.1016/j.epsl.2019.06.015.
Sossi, P. A., O. Nebel, H. S. C. O’Neill, and F. Moynier (2018), Zinc isotope composition of the Earth and its behaviour during planetary accretion, Chemical geology, 477, 73–84, https://doi.org/10.1016/j.chemgeo.2017.12.006.
Souquière, F., and O. Fabbri (2010), Pseudotachylytes in the Balmuccia peridotite (Ivrea Zone) as markers of the exhumation of the southern Alpine continental crust, Terra nova, 22(1), 70–77, https://doi.org/10.1111/j.1365-3121.2009.00918.x.
Souquière, F., P. Monié, O. Fabbri, and A. Chauvet (2011), Polyphase seismic faulting in the Ivrea zone (Italian Alps) revealed by 40Ar/39Ar dating of pseudotachylytes: Polyphase seismic faulting in the Ivrea zone, Terra nova, 23(3), 162–170, https://doi.org/10.1111/j.1365-3121.2011.00994.x.
Spang, A., M. Thielmann, and D. Kiss (2024), Rapid ductile strain localization due to thermal runaway, Journal of geophysical research. Solid earth, 129(10), e2024JB028,846, https://doi.org/10.1029/2024jb028846.
Sparks, R. S. J., and L. A. Marshall (1986), Thermal and mechanical constraints on mixing between mafic and silicic magmas, Journal of volcanology and geothermal research, 29(1-4), 99–124, https://doi.org/10.1016/0377-0273(86)90041-7.
Spray, J. (1993), Viscosity determinations of some frictionally generated silicate melts : Implications for fault zone rheology at high strain rates, Journal of geophysical research, 98, 8053–8068, https://doi.org/10.1029/93JB00020.
Spray, J. (1995), Pseudotachylyte controversy: Fact or friction?, Geology, 23, 1119–1122, https://doi.org/10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2.
Spray, J. G. (1987), Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, Journal of structural geology, 9(1), 49–60, https://doi.org/10.1016/0191-8141(87)90043-5.
Spray, J. G. (1992), A physical basis for the frictional melting of some rock-forming minerals, Tectonophysics, 204(3-4), 205–221, https://doi.org/10.1016/0040-1951(92)90308-s.
Stefan, J. (1891), Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Annalen der Physik, 278(2), 269–286, https://doi.org/10.1002/andp.18912780206.
Stünitz, H., H. Raimbourg, L. Nègre, J. Précigout, M. Jollands, P. Pongrac, P. Jeřabek, N. Gies, and M. Lüder (2024), Evolution of H2O content in deforming quartz aggregates: An experimental study, Journal of structural geology, 178(105029), 105,029, https://doi.org/10.1016/j.jsg.2023.105029.
Swanson, M. T. (1989), Sidewall ripouts in strike-slip faults, Journal of structural geology, 11(8), 933–948, https://doi.org/10.1016/0191-8141(89)90045-x.
Swanson, M. T. (1992), Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation, Tectonophysics, 204(3-4), 223–242, https://doi.org/10.1016/0040-1951(92)90309-t.
Techmer, K. S., H. Ahrendt, and K. Weber (1992), The development of pseudotachylyte in the Ivrea—Verbano Zone of the Italian Alps, Tectonophysics, 204(3-4), 307–322, https://doi.org/10.1016/0040-1951(92)90314-v.
Toffol, G., G. Pennacchioni, L. Menegon, D. Wallis, M. Faccenda, A. Camacho, and M. Bestmann (2024), On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault, Science advances, 10(9), eadi8533, https://doi.org/10.1126/sciadv.adi8533.
Trouw, R. A. J., C. W. Passchier, and D. J. Wiersma (2010), Atlas of Mylonites - and related microstructures, 26–43 pp., Springer, Berlin, Germany, https://doi.org/10.1007/978-3-642-03608-8.
Tsutsumi, A., and T. Shimamoto (1997a), High-velocity frictional properties of gabbro, Geophysical research letters, 24(6), 699–702, https://doi.org/10.1029/97gl00503.
Tsutsumi, A., and T. Shimamoto (1997b), Temperature measurements along simulated faults during seismic fault motion, in Proceedings of the 30th International Geological Congress, vol. 5, pp. 223–232.
Turcotte, D. L., and G. Schubert (2002), Geodynamics, 472 pp., Cambridge university press, Cambridge, England.
Ueda, T., M. Obata, G. Di Toro, K. Kanagawa, and K. Ozawa (2008), Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies, Geology, 36(8), 607, https://doi.org/10.1130/g24739a.1.
Ueda, T., M. Obata, K. Ozawa, and I. Shimizu (2020), The ductile-to-brittle transition recorded in the balmuccia peridotite body, Italy: Ambient temperature for the onset of seismic rupture in mantle rocks, Journal of geophysical research. Solid earth, 125(2), e2019JB017,385, https://doi.org/10.1029/2019jb017385.
Ujiie, K., H. Yamaguchi, A. Sakaguchi, and S. Toh (2007), Pseudotachylytes in an ancient accretionary complex and implications for melt lubrication during subduction zone earthquakes, Journal of structural geology, 29(4), 599–613, https://doi.org/10.1016/j.jsg.2006.10.012.
Van Der Laan, S. R., and P. J. Wyllie (1993), Experimental interaction of granitic and basaltic magmas and implications for mafic enclaves, Journal of petrology, 34(3), 491–517, https://doi.org/10.1093/petrology/34.3.491.
Voshage, H., A. W. Hofmann, M. Mazzucchelli, G. Rivalenti, S. Sinigoi, I. Raczek, and G. Demarchi (1990), Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating, Nature, 347 (6295), 731–736, https://doi.org/10.1038/347731a0.
Watson, E. B. (1981), Diffusion in magmas at depth in the Earth: The effects of pressure and dissolved H2O, Earth and planetary science letters, 52(2), 291–301, https://doi.org/10.1016/0012-821x(81)90184-9.
Watson, E. B. (1982), Basalt contamination by continental crust: Some experiments and models, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 80(1), 73–87, https://doi.org/10.1007/bf00376736.
Webber, K. L., A. U. Falster, W. B. Simmons, and E. E. Foord (1997), The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-plite dikes, Journal of petrology, 38(12), 1777–1791, https://doi.org/10.1093/petroj/38.12.1777.
Wenk, H. (1978), Are pseudotachylites products of fracture or fusion, Geology, 6(8), 507–511, https://doi.org/10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2.
Wiederkehr, M., R. Bousquet, S. Schmid, and A. Berger (2008), From subduction to collision: Thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge, Swiss Journal of Geosciences, 101, 127–155, https://doi.org/10.1007/s00015-008-1289-6.
Wiederkehr, M., M. Sudo, R. Bousquet, A. Berger, and S. M. Schmid (2009), Alpine orogenic evolution from subduction to collisional thermal overprint: The40Ar/39Ar age constraints from the Valaisan Ocean, central Alps: DATING IN POLYMETAMORPHIC METASEDIMENTS, Tectonics, 28(6), TC6009, https://doi.org/10.1029/2009tc002496.
Williams, R. T. (2019), Coseismic boiling cannot seal faults: Implications for the seismic cycle, Geology, 47 (5), 461–464, https://doi.org/10.1130/g45936.1.
Woo, S., R. Han, and K. Oohashi (2023), Frictional melting mechanisms of rocks during earthquake fault slip, Scientific reports, 13(1), 12,563, https://doi.org/10.1038/s41598-023-39752-9.
Wyatt, D. C., A. J. Smye, J. M. Garber, and B. R. Hacker (2022), Assembly and tectonic evolution of continental lower crust: Monazite petrochronology of the ivrea-verbano zone (val strona di omegna), Tectonics, 41(3), e2021TC006,841, https://doi.org/10.1029/2021tc006841.
Yao, L., S. Ma, and G. Di Toro (2023), Coseismic fault sealing and fluid pressurization during earthquakes, Nature communications, 14(1), 1136, https://doi.org/10.1038/s41467-023-36839-9.
Zhan, Z. (2020), Mechanisms and implications of deep earthquakes, Annual review of earth and planetary sciences, 48(1), 147–174, https://doi.org/10.1146/annurev-earth-053018-060314.
Zhang, Y. (2008), Geochemical Kinetics, Princeton University Press, Princeton, NJ. Zhang, Y. (2010), Diffusion in minerals and melts: Theoretical background, Reviews in mineralogy and geochemistry, 72(1), 5–59, https://doi.org/10.2138/rmg.2010.72.2.
Zhong, X., A. J. Petley-Ragan, S. H. M. Incel, M. Dabrowski, N. H. Andersen, and B. Jamtveit (2021), Lower crustal earthquake associated with highly pressurized frictional melts, Nature geoscience, 14(7), 519–525, https://doi.org/10.1038/s41561-021-00760-x.
Zingg, A. (1983), The Ivrea and Strona-Ceneri zones (Southern Alps, Ticino and N-Italy) - a review, Schweizerische mineralogische und petrographische Mitteilungen, 63, 361–392.
Zingg, A., and J. C. Hunziker (1990), The age of movements along the Insubric Line west of Locarno (northern Italy and southern Switzerland), Eclogae Geologicae Helvetiae, 83, 629–644.