Kinematics and Dynamics of Multi-stage Salt Diapirs in the Dutch-Central Graben, Southern North Sea

Main Article Content

Gerardo Gaitan
Jürgen Adam

Abstract

Salt structures are of significant economic and societal interest for the energy industry, forming hydrocarbon traps and serving as potential sites for energy storage. The thorough evaluation of multi-stage salt structures and the salt-encasing sedimentary sequences is paramount to mitigate risks and uncertainties in subsurface exploration. Utilizing a recently published methodology applied to a Two-Way-Travel-Time 3D seismic reflection dataset, time-structural, and isochron maps, this tectonostratigraphic study validates regional findings in a local context within the Dutch-Central Graben, Southern North Sea. This study subdivides the Dutch-Central Graben into five structural domains, analyzes the relationship between seismic stratigraphic sequences and sedimentary thickness variations, and provides a deeper understanding of salt diapirism. The study reveals that approximately 53\% of salt diapirs in the Dutch-Central Graben were triggered as salt anticlines in the main central graben domain and in the east margin and shoulder domains. Additionally, 36\% were triggered as reactive diapirs across the Dutch-Central Graben and 11\% as passive diapirs in the west shoulder, east margin, and main rift graben domain. The tallest salt diapirs displayed up to five local stages of salt diapirism across three regional phases of tectonic evolution: rift, contraction/inversion, and post-tectonic. Further, the study evinces that fault communication between nearby salt structures is more common during the salt anticline stage in the rift phase of tectonic evolution in the Southern North Sea, and that radial faults are not characteristic of a particular diapiric stage. These results enhance the understanding of the spatio-temporal variability of salt diapirs on a local scale, the development and evolution of salt-related radial and concentric faulting and provide a useful framework for analyzing salt structures at different scales.

Article Details

How to Cite
Gaitan, G., & Adam, J. (2025). Kinematics and Dynamics of Multi-stage Salt Diapirs in the Dutch-Central Graben, Southern North Sea. τeκτoniκa, 3(1), 1–30. https://doi.org/10.55575/tektonika2025.3.1.76
Section
Articles

References

Cameron, T. D. J., A. Crosby, P. S. Balson, D. H. Jeffrey, G. K. Lott, J. Bulat, and D. J. Harrison (1992), United Kingdom Offshore Regional Report: the Geology of the Southern North Sea, HMSO for the British Geological Survey, London.

Clark, J. A., S. A. Stewart, and J. A. Cartwright (1998), Evolution of the NW margin of the North Permian Basin, UK North Sea, Journal of the Geological Society, 155(4), 663–676, doi: 10.1144/gsjgs.155.4.0663.

Coward, M., and S. Stewart (1995), Salt-influenced structures in the Mesozoic-Tertiary cover of the southern North Sea, U.k, vol. 65, American Association of Petroleum Geologists, doi: 10.1306/m65604c10.

Davison, I., G. Alsop, N. Evans, and M. Safaricz (2000), Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea, Marine and Petroleum Geology, 17, 601–618, doi: 10.1016/S0264-8172(00)00011-8.

de Jager, J. (2003), Inverted basins in the Netherlands, similarities and differences, Netherlands Journal of Geosciences/Geologie en Mijnbouw, 82(04), 339–349, doi: 10.1017/s0016774600020175.

de Jager, J., and M. C. Geluk (2007), Petroleum geology, in Geology of the Netherlands, edited by T. E. Wong, D. A. J. Batjes, and J. de Jager, p. 241–264, Royal Netherlands Academy of Arts and Sciences.

Dooley, T., K. McClay, and R. Pascoe (2003), 3D analogue models of variable displacement extensional faults: applications to the Revfallet Fault system, offshore mid-Norway, Geological Society special publication, 212, 151–167, doi: 10.1144/GSL.SP.2003.212.01.10.

Doornenbal, H., and A. Stevenson (2010), Petroleum geological atlas of the Southern Permian Basin area, EAGE, Houten.

Doornenbal, J. C., H. Kombrink, R. Bouroullec, R. A. F. Dalman, G. De Bruin, C. R. Geel, A. J. P. Houben, B. Jaarsma, J. Juez-Larré, M. Kortekaas, H. F. Mijnlieff, S. Nelskamp, T. C. Pharaoh, J. H. Ten Veen, M. Ter Borgh, K. Van Ojik, R. M. C. H. Verreussel, J. M. Verweij, and G. J. Vis (2019), New insights on subsurface energy resources in the Southern North Sea Basin area, Geological Society special publication, 494(1), 233–268, doi: 10.1144/sp494-2018-178.

Duffy, O., University of Texas at Austin, M. Hudec, F. Peel, G. Apps, A. Bump, L. Moscardelli, T. Dooley, S. Bhattacharya, K. Wisian, and M. Shuster (2023), The role of salt tectonics in the energy transition: An overview and future challenges, Tektonika, 1(1), 18–48, doi: 10.55575/tektonika2023.1.1.11.

Evans, D., N. Petroleumsforening, and Greenland (2003), The millennium atlas : petroleum geology of the central and northern North Sea, Geological Society of London, 16, 389.

Gaitan, G., and J. Adam (2023), Extent and variability of Mesozoic-Cenozoic multi-stage salt diapirs in the Southern Permian Basin, Southern North Sea, Basin research, 35(6), 2078–2117, doi: 10.1111/bre.12791.

Gast, R. E., M. Dusar, C. Breitkreuz, R. Gaupp, J. W. Schneider, L. Stemmerik, M. C. Geluk, M. Geißler, J. Kiersnowski, K. W. Glennie, S. Kabel, and N. S. Jones (2010), Rotliegend, in Petroleum Geological Atlas of the Southern Permian Basin Area, edited by J. C. Doornenbal and A. G. Stevenson, pp. 101–121, EAGE Publications b.v., Houten.

Geldart, L. P., and R. E. Sheriff (2004), Seismic Velocity, in Problems in Exploration Seismology and their Solutions, chap. 5, pp. 141–180, SEG, doi: 10.1190/1.9781560801733.ch5.

Geluk, M. (2005), Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas, Ph.D. thesis, Utrecht University, Utrecht, The Netherlands.

Glennie, K. (1998), Petroleum geology of the North Sea: Basic concepts and recent advances, 4 ed., Blackwell Science, Philadelphia, PA.

Glennie, K., and D. Provan (1990), Lower Permian Rotliegend reservoir of the Southern North Sea gas province, Geological Society special publication, 50, 399–416, doi: 10.1144/GSL.SP.1990.050.01.25.

Grant, R. J., J. R. Underhill, J. Hernández-Casado, S. M. Barker, and R. J. Jamieson (2019), Upper Permian Zechstein Supergroup carbonate-evaporite platform palaeomorphology in the UK Southern North Sea, Marine and petroleum geology, 100, 484–518, doi: 10.1016/j.marpetgeo.2017.11.029.

Guterch, A., S. Wybraniec, M. Grad, A. Chadwick, C. M. Krawczyk, P. A. Ziegler, H. Thybo, and W. De Vos (2010), Crustal structure and structural framework, in Petroleum geological atlas of the southern Permian Basin area, edited by J. C. Doornenbal and A. G. Stevenson, pp. 11–23, EAGE, Houten.

Harding, R., and M. Huuse (2015), Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea, Marine and petroleum geology, 61, 39–55, doi: 10.1016/j.marpetgeo.2014.12.003.

Hodgson, N., J. Farnsworth, and A. Fraser (1992), Salt-related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS, Geological Society special publication, 67, 31–63, doi: 10.1144/GSL.SP.1992.067.01.03.

Hudec, M. R., and M. P. A. Jackson (2007), Terra infirma: Understanding salt tectonics, Earth-science reviews, 82(1-2), 1–28, doi: 10.1016/j.earscirev.2007.01.001.

Hudec, M. R., and M. P. A. Jackson (2009), Interaction between spreading salt canopies and their peripheral thrust systems, Journal of structural geology, 31(10), 1114–1129, doi: 10.1016/j.jsg.2009.06.005.

Hudec, M. R., and M. P. A. Jackson (2011), The salt mine: a digital atlas of salt tectonics: Austin TX, The University of Texas at Austin, Bureau of Economic Geology, 305 pp., American Association of Petroleum Geologists, Tulsa, OK.

Hudec, M. R., M. P. A. Jackson, and D. D. Schultz-Ela (2009), The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins, Geological Society of America bulletin, 121(1-2), 201–221.

Jackson, C. A.-L., and S. A. Stewart (2017), Composition, tectonics, and hydrocarbon significance of zechstein supergroup salt on the United Kingdom and Norwegian continental shelves, in Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, pp. 175–201, Elsevier, doi: 10.1016/b978-0-12-809417-4.00009-4.

Jackson, M. P. A., and M. R. Hudec (2017), Salt tectonics: Principles and practice, Cambridge University Press, Cambridge, England, doi: 10.1017/9781139003988.

Jackson, M. P. A., and B. C. Vendeville (1994), Regional extension as a geologic trigger for diapirism, GSA Bulletin, 106(1), 57–73, doi: 10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2.

Jackson, M. P. A., B. C. Vendeville, and D. D. Schultz-Ela (1994), Structural dynamics of salt systems, Annual review of earth and planetary sciences, 22(1), 93–117, doi: 10.1146/annurev.ea.22.050194.000521.

Karam, P., and S. Mitra (2016), Experimental studies of the controls of the geometry and evolution of salt diapirs, Marine and petroleum geology, 77, 1309–1322, doi: 10.1016/j.marpetgeo.2016.05.010.

Maystrenko, Y. P., U. Bayer, and M. Scheck-Wenderoth (2012), Regional-scale structural role of Permian salt within the Central European Basin System, Geological Society special publication, 363(1), 409–430, doi: 10.1144/sp363.19.

Maystrenko, Y. P., U. Bayer, and M. Scheck-Wenderoth (2013), Salt as a 3D element in structural modeling — Example from the Central European Basin System, Tectonophysics, 591, 62–82, doi: 10.1016/j.tecto.2012.06.030.

Moragas, M., J. Vergés, T. Nalpas, E. Saura, J. D. Martín-Martín, G. Messager, and D. W. Hunt (2017), The impact of syn- and post-extension prograding sedimentation on the development of salt-related rift basins and their inversion: Clues from analogue modelling, Marine and petroleum geology, 88, 985–1003, doi: 10.1016/j.marpetgeo.2017.10.001.

Nikolinakou, M. A., P. B. Flemings, and M. R. Hudec (2014), Modeling stress evolution around a rising salt diapir, Marine and petroleum geology, 51, 230–238, doi: 10.1016/j.marpetgeo.2013.11.021.

Peryt, T. M., M. C. Geluk, A. Mathiesen, J. Paul, and K. Smith (2010), Zechstein, Petroleum geological atlas of the Southern Permian Basin area, pp. 123–147.

Pharaoh, T. C., M. Dusar, M. Geluk, F. Kockel, C. M. Krawczyk, P. Krzywiec, M. Scheck-Wenderoth, H. Thybo, O. Vejbaek, and J.-D. Van Wees (2010), Tectonic evolution, in Petroleum geological atlas of the Southern Permian Basin area, edited by J. C. Doornenbal and A. G. Stevenson, pp. 25–57, EAGE, Houten.

Pichel, L. M., and C. A.-L. Jackson (2020), Four-dimensional variability of composite halokinetic sequences, Basin research, 32(6), 1277–1299, doi: 10.1111/bre.12428.

Preiss, A. D., and J. Adam (2021), Basement fault trends in the Southern North Sea Basin, Journal of structural geology, 153(104449), 104,449, doi: 10.1016/j.jsg.2021.104449.

Quirk, D. (1993), Interpreting the upper carboniferous of the Dutch Cleaver Bank High, in Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference, vol. 4, edited by J. R. Parker, pp. 697–706, The Geological Society, London, doi: 10.1144/0040697.

Remmelts, G. (1995), Fault-related salt tectonics in the southern North Sea, the Netherlands, AAPG Special Volumes, 65, 261–272.

Remmelts, G. (1996), Salt tectonics in the southern North Sea, the Netherlands, in Geology of Gas and Oil under the Netherlands, edited by H. E. Rondeel, D. A. J. Batjes, and W. H. Nieuwenhuijs, pp. 143–158, Springer Netherlands, Dordrecht, doi: 10.1007/978-94-009-0121-6_13.

Schnabel, M., V. Noack, N. Ahlrichs, and C. Hübscher (2021), A comprehensive model of seismic velocities for the Bay of Mecklenburg (Baltic Sea) at the North German Basin margin: implications for basin development, Geo-marine letters, 41(2), doi: 10.1007/s00367-021-00692-w.

Sears, R. A., A. R. Harbury, A. J. G. Protoy, and D. J. Stewart (1993), Structural styles from the Central Graben in the UK and Norway, Geological Society London Petroleum Geology Conference series, 4(1), 1231–1243, doi: 10.1144/0041231.

Stewart, S. (2007), Salt tectonics in the North Sea Basin: a structural style template for seismic interpreters, Geological Society special publication, 272, 361–396, doi: 10.1144/GSL.SP.2007.272.01.19.

Stewart, S., and M. Coward (1995), Synthesis of salt tectonics in the southern North Sea, UK, Marine and Petroleum Geology, 12(5), 457–475, doi: 10.1016/0264-8172(95)91502-G.

Stewart, S. A. (2006), Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults, Marine and petroleum geology, 23(8), 843–853, doi: 10.1016/j.marpetgeo.2006.04.001.

Veen, J., S. V. Gessel, and M. D. Dulk (2012), Thin- and thick-skinned salt tectonics in the Netherlands: a quantitative approach, Geologie En Mijnbouw, 91(4), 447–464, doi: 10.1017/S0016774600000330.

Vejbæk, O. V., C. Andersen, M. Dusar, G. F. W. Herngreen, H. Krabbe, K. Leszczyński, G. K. Lott, J. Mutterlose, and A. S. Van der Molen (2010), Cretaceous, Petroleum geological atlas of the southern Permian Basin Area, pp. 195–209.

Vendeville, B. (2002), A new interpretation of Trusheim’s classic model of salt-diapir growth, Gulf Coast Association of Geological Societies Transactions, 52, 943–952.

Vendeville, B., and M. Jackson (1992a), The fall of diapirs during thin-skinned extension, Marine and Petroleum Geology, 9(4), 331–354, doi: 10.1016/0264-8172(92)90047-I.

Vendeville, B., P. Cobbold, P. Davy, P. Choukroune, and J. Brun (1987), Physical models of extensional tectonics at various scales, Geological Society special publication, 28, 107–195, doi: 10.1144/GSL.SP.1987.028.01.08.

Vendeville, B. C., and M. P. A. Jackson (1990), Physical modeling of the growth of extensional and contractional salt tongues on continental slopes (abs.), AAPG bulletin, 74(5), 784.

Vendeville, B. C., and M. P. A. Jackson (1992b), The rise of diapirs during thin-skinned extension, Marine and petroleum geology, 9(4), 331–354.

Ziegler, P. A. (1990), Geological Atlas of Western and Central Europe, Shell Internationale Petroleum Maatschappij B.V., Geological Society Publishing House (Bath).