Lateral Evolution of the Deep Crustal Structure of the Lesser Antilles Subduction Zone from Wide-Angle Seismic Modeling

Main Article Content

Frauke Klingelhoefer
Boris Marcaillou
Muriel Laurencin
Mireille Laigle
Jean-Frédéric Lebrun
Laure Schenini
David Graindorge
Mikael Evain
Heidrun Kopp

Abstract

The Lesser Antilles is a subduction zone where devastating earthquakes occur with a long recurrence interval. Here, oceanic lithosphere from the Mid-Atlantic spreading center subducts at a slow convergence velocity of 20 mm/yr underneath the Caribbean Plate. Offshore Antigua and Barbuda previous work proposed the existence of a patch of amagmatically accreted oceanic crust bearing a high percentage of serpentinite and therefore a high fluid content. During the ANTITHESIS cruise a seismic profile was acquired in this zone of relative seismic quiescence. The combined wide-angle and reflection seismic profile was recorded using 25 ocean-bottom seismometers, a 126 l (7699 cu. in.) tuned airgun array and a 2.8 km long seismic streamer. The resulting velocity model images the forearc and oceanic crust to a depth of 30 km. The oceanic crust is only about 5 km thick and was best modelled as one single layer with a constant velocity gradient. Gravity modelling indicates that the oceanic crustal densities are lower than magmatic rock densities, thus in good agreement with the presence of relatively light serpentinised mantle material incorporated in the crust. The fluids leaving this highly hydrated subducting slab at different depths might be responsible for the subdued seismicity of the study region. The forearc is about 25 km thick and has velocities slightly higher than continental crust. Along the forearc the crustal thickness is highly variable between 15 and 30 km.

Article Details

How to Cite
Klingelhoefer, F., Marcaillou, B., Laurencin, M., Laigle, M., Lebrun, J.-F., Schenini, L., Graindorge, D., Evain, M., & Kopp, H. (2025). Lateral Evolution of the Deep Crustal Structure of the Lesser Antilles Subduction Zone from Wide-Angle Seismic Modeling. τeκτoniκa, 3(2), 108–126. https://doi.org/10.55575/tektonika2025.3.2.77
Section
Articles

References

Allen, R., J. Collier, A. Stewart, T. Henstock, S. Goes, and A. Rietbrock (2019), The role of arc migration in the development of the Lesser Antilles: A new tectonic model for the Cenozoic evolution of the eastern Caribbean, Geology, 47 (9), 891–895, https://doi.org/10.1130/G46708.1.

Arnaiz-Rodríguez, M. S., M. Schmitz, and F. Audemard (2016), Crustal structure of the Lesser Antilles arc estimated from receiver functions, Revista Mexicana de Ciencias Geológicas, 33(3), 286–296.

Auffret, Y., P. Pelleau, F. Klingelhoefer, L. Géli, J. Crozon, J. Lin, and J. Sibuet (2004), MicrOBS: A new generation of ocean bottom seismometer, First Break, 22(7), 41–47, https://doi.org/10.3997/1365-2397.2004012.

Bangs, N. L., G. L. Christeson, and T. H. Shipley (2003), Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system: LESSER ANTILLES SUBDUCTION ZONE BACKSTOP, Journal of Geophysical Research, 108(B7), https://doi.org/10.1029/2002jb002040.

Barnes, P. M., L. M. Wallace, D. M. Saffer, R. E. Bell, M. B. Underwood, A. Fagereng, F. Meneghini, H. M. Savage, H. S. Rabinowitz, J. K. Morgan, H. Kitajima, S. Kutterolf, Y. Hashimoto, C. H. Engelmann de Oliveira, A. Noda, M. P. Crundwell, C. L. Shepherd, A. D. Woodhouse, R. N. Harris, M. Wang, S. Henrys, D. H. N. Barker, K. E. Petronotis, S. M. Bourlange, M. B. Clennell, A. E. Cook, B. E. Dugan, J. Elger, P. M. Fulton, D. Gamboa, A. Greve, S. Han, A. Hüpers, M. J. Ikari, Y. Ito, G. Y. Kim, H. Koge, H. Lee, X. Li, M. Luo, P. R. Malie, G. F. Moore, J. J. Mountjoy, D. D. McNamara, M. Paganoni, E. J. Screaton, U. Shankar, S. Shreedharan, E. A. Solomon, X. Wang, H.-Y. Wu, I. A. Pecher, L. J. LeVay, and IODP Expedition 372 Scientists (2020), Slow slip source characterized by lithological and geometric heterogeneity, Science Advances, 6(13), eaay3314, https://doi.org/10.1126/sciadv.aay3314.

Bernard, P., and J. Lambert (1988), Subduction and seismic hazard in the northern Lesser Antilles: Revision of the historical seismicity, Bulletin of the Seismological Society of America, 78(6), 1965–1983, https://doi.org/10.1785/BSSA0780061965.

Bie, L., A. Rietbrock, S. Hicks, R. Allen, J. Blundy, V. Clouard, J. Collier, J. Davidson, T. Garth, S. Goes, N. Harmon, T. Henstock, J. Hunen, M. Kendall, F. Krüger, L. Lynch, C. Macpherson, R. Robertson, K. Rychert, S. Tait, J. Wilkinson, and M. Wilson (2019), Along-arc heterogeneity in local seismicity across the Lesser Antilles subduction zone from a dense ocean-bottom seismometer network, Seismological Research Letters, 91(1), 237–247, https://doi.org/10.1785/0220190147.

Bie, L., S. Hicks, A. Rietbrock, S. Goes, J. Collier, C. Rychert, N. Harmon, and B. Maunder (2022a), Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone, Earth and Planetary Science Letters, 586, 117,535, https://doi.org/10.1016/j.epsl.2022.117535.

Bie, L., S. Hicks, A. Rietbrock, S. Goes, J. Collier, C. Rychert, N. Harmon, and B. Maunder (2022b), Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone, Earth and Planetary Science Letters, 586, 117,535, https://doi.org/https://doi.org/10.1016/j.epsl.2022.117535.

Boschman, L. M., D. J. J. van Hinsbergen, T. H. Torsvik, W. Spakman, and J. L. Pindell (2014), Kinematic reconstruction of the Caribbean region since the Early Jurassic, Earth-Science Reviews, 138, 102–136, https://doi.org/10.1016/j.earscirev.2014.08.007.

Boucard, M., B. Marcaillou, J. Lebrun, M. Laurencin, F. Klingelhoefer, M. Laigle, S. Lallemand, L. Schenini, D. Graindorge, J. Cornée, P. Münch, M. Philippon, and the ANTITHESIS and GARANTI Scientif (2021), Paleogene V-shaped basins and Neogene subsidence of the Northern Lesser Antilles forearc, Tectonics, 40(3), e2020TC006,524, https://doi.org/10.1029/2020TC006524.

Bouysse, P. (1988), Opening of the Grenada back-arc basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene, Tectonophysics, 149(1-2), 121–143, https://doi.org/10.1016/0040-1951(88)90122-9.

Cannat, M. (1993), Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research, 98(B3), 4163–4172, https://doi.org/10.1029/92jb02221.

Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartín, V. Combier, and M. Baala (2006), Modes of seafloor generation at a melt-poor ultraslow-spreading ridge, Geology, 34(7), 605–608, https://doi.org/10.1130/G22486.1.

Carlson, R., and D. Miller (2003), Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophysical Research Letters, 30(5), https://doi.org/10.1029/2002GL016600.

Carlson, R. L. (2003), Bound water content of the lower oceanic crust estimated from modal analyses and seismic velocities of oceanic diabase and gabbro: BOUND WATER CONTENT OF THE LOWER OCEANIC CRUST, Geophysical Research Letters, 30(22), https://doi.org/10.1029/2003gl018213.

Carlson, R. L., and C. N. Herrick (1990), Densities and porosities in the oceanic crust and their variations with depth and age, Journal of Geophysical Research, 95(B6), 9153, https://doi.org/10.1029/jb095ib06p09153.

Christensen, N. (2004), Serpentinites, Peridotites, and Seismology, International Geology Review, 46(9), 795–816, https://doi.org/10.2747/0020-6814.46.9.795.

Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view, Journal of Geophysical Research, Solid Earth, 100(B6), 9761–9788, https://doi.org/10.1029/95JB00259.

Christeson, G., N. Bangs, and T. Shipley (2003), Deep structure of an island arc backstop, Lesser Antilles subduction zone, Journal of Geophysical Research, Solid Earth, 108(B7), 2327, https://doi.org/10.1029/2002JB002243.

Cloos, M., and R. L. Shreve (1996), Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones, Geology, 24, 107–110, https://doi.org/10.1130/0091-7613(1996)024<0107:SZTATS>2.3.CO;2.

Cohen, J. K., and J. W. Stockwell (2003), Seismic Unix Release 37: a free package for seismic research and processing, Center for Wave Phenomena, Colorado School of Mines.

Collot, J., B. Marcaillou, F. Sage, F. Michaud, W. Agudelo, P. Charvis, D. Graindorge, M. Gutscher, and G. Spence (2004), Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador–southwest Colombia margin, Journal of Geophysical Research, 109, B11,103, https://doi.org/10.1029/2004JB003060.

Davy, R., J. Collier, T. Henstock, A. Rietbrock, S. Goes, J. Blundy, N. Harmon, C. Rychert, C. Macpherson, J. van Hunen, M. Kendall, J. Wilkinson, J. Davidson, M. Wilson, G. Cooper, B. Maunder, L. Bie, S. Hicks, R. Allen, B. Chichester, S. Tait, R. Robertson, J. Latchman, F. Krüger, J. Collier, T. Henstock, R. Allen, S. Butcher, G. Castiello, C. Chen, C. Harkin, D. Posse, B. Roche, A. Bird, A. Clegg, B. Pitcairn, M. Weeks, H. Kirk, and E. Labahn (2020), Wide-angle seismic imaging of two modes of crustal accretion in mature Atlantic Ocean crust, Journal of Geophysical Research, Solid Earth, 125, e2019JB019,100, https://doi.org/10.1029/2019JB019100.

Dean, S. M., T. A. Minshull, R. B. Whitmarsh, and K. E. Louden (2000), Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: The IAM-9 transect at 40 20 N, Journal of Geophysical Research, Solid Earth, 105(B3), 5859–5885.

DeMets, C., P. E. Jansma, G. S. Mattioli, T. H. Dixon, F. Farina, R. Bilham, E. Calais, and P. Mann (2000), GPS geodetic constraints on Caribbean-North America Plate Motion, Geophysical Research Letters, 27 (3), 437–440, https://doi.org/10.1029/1999gl005436.

Deplus, C. (1998), AGUADOMAR cruise,L’Atalante R/V, https://doi.org/10.17600/98010120.

Escartín, J., D. K. Smith, J. Cann, H. Schouten, C. Langmuir, and S. Escrig (2008), Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, 455(7214), 790–794, https://doi.org/10.1038/nature07333.

Evain, M., A. Galve, P. Charvis, M. Laigle, H. Kopp, A. Bécel, W. Weinzierl, A. Hirn, E. Flueh, and J. Gallart (2013), Structure of the Lesser Antilles subduction forearc and backstop from 3D seismic refraction tomography, Tectonophysics, 603, 55–67, https://doi.org/10.1016/J.TECTO.2011.09.021.

Ezenwaka, K., B. Marcaillou, M. Laigle, F. Klingelhoefer, J. Lebrun, M. Paulatto, Y. Biari, F. Rolandone, F. Lucazeau, A. Heuret, T. Pichot, and H. Bouquerel (2022), Thermally-constrained fluid circulation and seismicity in the Lesser Antilles subduction zone, Earth and Planetary Science Letters, 597, 117,823, https://doi.org/10.1016/j.epsl.2022.117823.

Feuillet, N., F. Beauducel, and P. Tapponnier (2011), Tectonic context of moderate to large historical earthquakes in the lesser Antilles and mechanical coupling with volcanoes, Journal of Geophysical Research, Solid Earth, 116(B10), 1–26, https://doi.org/10.1029/2011JB008443.

Gonzalez, O., V. Clouard, S. Tait, and G. Panza (2018), S-wave velocities of the lithosphere-asthenosphere system in the Lesser Antilles from the joint inversion of surface wave dispersion and receiver function analysis, Tectonophysics, 734, 1–15, https://doi.org/10.1016/J.TECTO.2018.03.021.

Hamilton, E. (1978), Sound velocity–density relations in sea-floor sediments and rocks, The journal of the Acoustical Society of America, 63, 366–377, https://doi.org/10.1121/1.381747.

Harvard Geospatial Library (2003), Volcanoes of the world, https://hgl.harvard.edu/catalog/harvard-glb-volc.

Hough, S. (2013), Missing great earthquakes, Journal of Geophysical Research, Solid Earth, 118(3), 1098–1108, https://doi.org/10.1002/jgrb.50083.

Hughes, S., P. Barton, and D. Harrison (1998), Exploration in the Shetland-Faeroe Basin using densely spaced arrays of ocean-bottom seismometers, Geophysics, 63(2), 490–501, https://doi.org/10.1190/1.1444350.

Hyndman, R., and K. Wang (1993), Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone, Journal of Geophysical Research, 98, 2039–2060, https://doi.org/10.1029/92JB02279.

International Seismological Centre (2022), ISC-GEM Earthquake Catalogue, https://doi.org/10.31905/d808b825.

Jagoutz, O., and P. Kelemen (2015), Role of arc processes in the formation of continental crust, Annual Review of Earth and Planetary Sciences, 43, 363–404, https://doi.org/10.1146/ANNUREV-EARTH-040809-152345.

Kay, R., and S. Kay (1993), Delamination and delamination magmatism, Tectonophysics, 219(1-3), 177–189, https://doi.org/10.1016/0040-1951(93)90295-U.

Kelemen, P. B., K. Hanghøj, and A. R. Greene (2003), One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, 3, 659.

Kopp, H., W. Weinzierl, A. Becel, P. Charvis, M. Evain, E. R. Flueh, A. Gailler, A. Galve, A. Hirn, A. Kandilarov, D. Klaeschen, M. Laigle, C. Papenberg, L. Planert, and E. Roux (2011), Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust, Earth and Planetary Science Letters, 304(1-2), 121–134, https://doi.org/10.1016/j.epsl.2011.01.024.

Laigle, M., J. F. Lebrun, and A. Hirn (2007), SISMANTILLES 2 cruise, L’Atalante R/V, https://doi.org/10.17600/7010020.

Laigle, M., A. Hirn, M. Sapin, A. Bécel, P. Charvis, E. Flueh, J. Díaz, J. Lebrun, A. Gesret, R. Raffaele, A. Galve, M. Evain, M. Ruiz, H. Kopp, G. Bayrakci, W. Weinzierl, Y. Hello, J. Lépine, J. Viodé, M. Sachpazi, J. Gallart, E. Kissling, and R. Nicolich (2013a), Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc, Tectonophysics, 603, 1–20, https://doi.org/10.1016/J.TECTO.2013.05.043.

Laigle, M., A. Becel, B. de Voogd, M. Sachpazi, G. Bayrakci, J.-F. Lebrun, and M. Evain (2013b), Along-arc segmentation and interaction of subducting ridges with the Lesser Antilles Subduction forearc crust revealed by MCS imaging, Tectonophysics, 603, 32–54, https://doi.org/10.1016/j.tecto.2013.05.028.

Lardeaux, J., P. Münch, M. Corsini, J. Cornée, C. Vérati, J. Lebrun, F. Quillévéré, M. Melinte-Dobrinescu, J. Léticée, J. Fietzke, Y. Mazabraud, F. Cordey, and A. Randrianasolo (2013), La Désirade island (Guadeloupe, French West Indies): a key target for deciphering the role of reactivated tectonic structures in Lesser Antilles arc building, Bulletin de la Société Géologique de France, 184(1-2), 21–34, https://doi.org/10.2113/GSSGFBULL.184.1-2.21.

Laurencin, M., D. Graindorge, F. Klingelhoefer, B. Marcaillou, and M. Evain (2018), Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone, Earth and Planetary Science Letters, 492, 59–72, https://doi.org/10.1016/J.EPSL.2018.03.048.

Laurencin, M., B. Marcaillou, D. Graindorge, J.-F. Lebrun, F. Klingelhoefer, M. Boucard, M. Laigle, S. Lallemand, and L. Schenini (2019), The Bunce Fault and strain partitioning in the Northern Lesser Antilles, Geophysical Research Letters, 46(16), 9573–9582, https://doi.org/10.1029/2019gl083490.

Lebrun, J. F. (2009), KASHALLOW 2 cruise, Le Suroît R/V, https://doi.org/10.17600/9020010.

Loureiro, A., A. Afilhado, L. Matias, M. Moulin, and D. Aslanian (2016), Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil, Tectonophysics, 683, 286–307, https://doi.org/10.1016/J.TECTO.2016.05.040.

Ludwig, W. J., J. E. Nafe, and C. L. Drake (1970), The Sea, Vol. 4, Part 1.

Marcaillou, B., and F. Klingelhoefer (2013), ANTITHESIS LEG1 cruise,L’Atalante R/V, https://doi.org/10.17600/13010070.

Marcaillou, B., F. Klingelhoefer, M. Laurencin, J. Lebrun, M. Laigle, S. Lallemand, L. Schenini, A. Gay, M. Boucard, K. Ezenwaka, and D. Graindorge (2021), Pervasive detachment faults within the slow spreading oceanic crust at the poorly coupled Antilles subduction zone, Communications Earth & Environment, 2(1), 203, https://doi.org/10.1038/s43247-021-00269-6.

Massin, F., V. Clouard, I. Vorobieva, F. Beauducel, J. Saurel, C. Satriano, M. Bouin, and D. Bertil (2021), Automatic picking and probabilistic location for earthquake assessment in the Lesser Antilles subduction zone (1972–2012), Comptes Rendus: Geoscience, 353(S1), 187–209, https://doi.org/10.5802/crgeos.81.

Mccaffrey, R. (2008), Global frequency of magnitude 9 earthquakes, Geology, 36(3), 263–266, https://doi.org/10.1130/G24402A.1.

Melekhova, E., D. Schlaphorst, J. Blundy, J. Kendall, C. Connolly, A. McCarthy, and R. Arculus (2019), Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions, Earth and Planetary Science Letters, 516, 12–24, https://doi.org/10.1016/J.EPSL.2019.03.030.

Neill, I., J. A. Gibbs, A. Hastie, and A. Kerr (2010), Origin of the volcanic complexes of La Désirade, Lesser Antilles: Implications for tectonic reconstruction of the Late Jurassic to Cretaceous Pacific-proto Caribbean margin, Lithos, 120(3-4), 407–420, https://doi.org/10.1016/J.LITHOS.2010.08.026.

Nikolaeva, K., T. Gerya, and J. Connolly (2008), Numerical modelling of crustal growth in intraoceanic volcanic arcs, Physics of the Earth and Planetary Interiors, 171(1-4), 336–356, https://doi.org/10.1016/J.PEPI.2008.06.026.

Padron, C., F. Klingelhoefer, B. Marcaillou, J. F. Lebrun, S. Lallemand, C. Garrocq, and G. C. Team (2021), Deep structure of the Grenada Basin from wide-angle seismic, bathymetric and gravity data, Journal of Geophysical Research, Solid Earth, 126(2), e2020JB020,472.

Patriat, M. (2007), ANTIPLAC cruise,L’Atalante R/V, https://doi.org/10.17600/7010010.

Paulatto, M., M. Laigle, A. Galve, P. Charvis, M. Sapin, G. Bayrakci, M. Evain, and H. Kopp (2017), Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles, Nature Communications, 8, 15,980, https://doi.org/10.1038/ncomms15980.

Pindell, J. L., and L. Kennan (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, Geological Society Special Publication, 328(1), 1–55, https://doi.org/10.1144/sp328.1.

Ranero, C., J. Morgan, K. Mcintosh, and C. Reichert (2003), Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, 425, 367–373, https://doi.org/10.1038/nature01961.

Ruff, L., and H. Kanamori (1980), Seismicity and the subduction process, Physics of the Earth and Planetary Interiors, 23(3), 240–252, https://doi.org/10.1016/0031-9201(80)90117-X.

Rüpke, L., J. Morgan, M. Hort, and J. Connolly (2004), Serpentine and the subduction zone water cycle, Earth and Planetary Science Letters, 223(1-2), 17–34, https://doi.org/10.1016/J.EPSL.2004.04.018.

Sauter, D., M. Cannat, S. Rouméjon, M. Andréani, D. Birot, A. Bronner, D. Brunelli, J. Carlut, A. Delacour, V. Guyader, C. MacLeod, G. Manatschal, V. Mendel, B. Ménez, V. Pasini, E. Ruellan, and R. Searle (2013), Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years, Nature Geoscience, 6(4), 314–320, https://doi.org/10.1038/NGEO1771.

Schlaphorst, D., J. Kendall, J. Collier, J. Verdon, J. Blundy, B. Baptie, J. Latchman, F. Massin, and M. Bouin (2016), Water, oceanic fracture zones and the lubrication of subducting plate boundaries-insights from seismicity, Geophysical Journal International, 204(3), 1405–1420, https://doi.org/10.1093/GJI/GGV509.

Schlaphorst, D., E. Melekhova, J. Kendall, J. Blundy, and J. Latchman (2018), Probing layered arc crust in the Lesser Antilles using receiver functions, Royal Society Open Science, 5(11), 180,764, https://doi.org/10.1098/rsos.180764.

Scholz, C., and C. Small (1997), The effect of seamount subduction on seismic coupling, Geology, 25, 487–490, https://doi.org/10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2.

Smith, D. K. (2013), Tectonics: Mantle spread across the sea floor, Nature Geoscience, 6, 247–248, https://doi.org/10.1038/NGEO1786.

Smith, D. K., J. Cann, and J. Escartín (2006), Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge, Nature, 442(7101), 440–443, https://doi.org/10.1038/nature04950.

Smith, D. K., J. Escartín, H. Schouten, and J. Cann (2008), Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N), Geochemistry, Geophysics, Geosystems, 9(3), https://doi.org/10.1029/2007GC001699.

Smith, W. H. F., and D. Sandwell (1997), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277 (5334), 1956–1962, https://doi.org/10.1126/SCIENCE.277.5334.1956.

Stein, C., and S. Stein (1992), A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359(6391), 123–129, https://doi.org/10.1038/359123A0.

Symithe, S., E. Calais, J. D. Chabalier, R. Robertson, and M. Higgins (2015), Current block motions and strain accumulation on active faults in the Caribbean, Journal of Geophysical Research, Solid Earth, 120(5), 3748–3774, https://doi.org/10.1002/2014JB011779.

Taylor, S. (1967), The origin and growth of continents, Tectonophysics, 4(1), 17–34, https://doi.org/10.1016/0040-1951(67)90056-X.

Tsuru, T., J.-O. Park, S. Miura, S. Kodaira, Y. Kido, and T. Hayashi (2002), Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling, Journal of Geophysical Research, 107, 2357, https://doi.org/10.1029/2001JB001664.

Van Avendonk, H. V., W. Holbrook, G. Nunes, D. Shillington, B. Tucholke, K. Louden, H. Larsen, and J. Hopper (2006), Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada, Journal of Geophysical Research, Solid Earth, 111(B11), https://doi.org/10.1029/2005JB004156.

van Rijsingen, E., E. Calais, R. Jolivet, J. de Chabalier, J. Jara, S. Symithe, R. Robertson, and G. Ryan (2020), Inferring interseismic coupling along the Lesser Antilles arc: A Bayesian approach, Journal of Geophysical Research, Solid Earth, 126(2), e2020JB020,677, https://doi.org/10.1029/2020JB020677.

Wallace, L., A. Fagereng, and S. Ellis (2012), Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts, Geology, 40(10), 895–898, https://doi.org/10.1130/G33373.1.

Wang, K., and S. Bilek (2011), Do subducting seamounts generate or stop large earthquakes, Geology, 39, 819–822, https://doi.org/10.1130/G31856.1.

Westbrook, G., J. Ladd, P. Buhl, N. Bangs, and G. Tiley (1988), Cross section of an accretionary wedge: Barbados Ridge complex, Geology, 16(7), 631–635, https://doi.org/10.1130/0091-7613(1988)016<0631:CSOAAW>2.3.CO;2.

White, R., D. McKenzie, and R. O’Nions (1992), Oceanic crustal thickness from seismic measurements and rare earth element inversions, Journal of Geophysical Research, Solid Earth, 97 (B13), 19,683–19,715, https://doi.org/10.1029/92JB01749.

Zahibo, N., and E. N. Pelinovsky (2001), Evaluation of tsunami risk in the Lesser Antilles, Natural Hazards and Earth System Sciences, 1(4), 221–231, https://doi.org/10.5194/nhess-1-221-2001.

Zelt, C. (1999), Modelling strategies and model assessment for wide-angle seismic traveltime data, Geophysical Journal International, 139(1), 183–204, https://doi.org/10.1046/J.1365-246X.1999.00934.X.

Zelt, C., and R. B. Smith (1992), Seismic traveltime inversion for 2-D crustal velocity structure, Geophysical Journal International, 108(1), 16–34, https://doi.org/10.1111/J.1365-246X.1992.TB00836.X.