Impact of Material Strength on Releasing Bend Evolution

Main Article Content

Alana Gabriel
Hanna Elston
Michele Cooke
Christ Ramos Sanchez

Abstract

Releasing bends along active strike-slip faults display a range of fault patterns that may depend on crustal strength. Scaled physical experiments allow us to directly document the evolution of established releasing bend systems under differing strength conditions. Here, we use a split-box apparatus filled with wet clay of differing strengths to run and analyze releasing bend evolution. Precut vertical discontinuities within the clay slip with right-lateral displacement of the basal plate followed by the development of oblique-slip secondary faults. In contrast to the weaker clay experiment, which produces left-lateral cross faults that facilitate major reorganization of the primary slip pathway, the stronger clay experiment produces negligible cross faults and has a persistent primary slip pathway. Within both experiments, the dip of initially vertical faults shallows due to lateral flow at depth and left-lateral slip develops along normal fault segments that have highly oblique strike. The experiments show that fault systems within weaker strength materials produce greater delocalization of faulting, with both greater number of faults and greater off-fault deformation that can impact hazard. For example, the hot, thin and weak crust hosting the Brawley Seismic Zone accommodates slip along many distributed faults, which is in sharp contrast to the more localized fault network of the Southern Gar Basin in cooler, thicker and stronger crust. The fault patterns observed in the experiments match patterns of crustal examples and may guide future models of fault evolution within relatively strong and weak crust that have differing heat flux and thickness.

Article Details

How to Cite
Gabriel, A., Elston, H., Cooke, M., & Ramos Sanchez, C. (2025). Impact of Material Strength on Releasing Bend Evolution. τeκτoniκa, 3(1), 64–81. https://doi.org/10.55575/tektonika2025.3.1.81
Section
Articles

References

Adam, J., J. L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. Lohrmann, S. Hoth, W. van der Zee, and J. Schmatz (2005), Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques, Journal of structural geology, 27 (2), 283–301, doi: 10.1016/j.jsg.2004.08.008.

Barka, A. A., and K. Kadinsky-Cade (1988), Strike-slip fault geometry in Turkey and its influence on earthquake activity, Tectonics, 7 (3), 663–684, doi: 10.1029/tc007i003p00663.

Biasi, G. P., and S. G. Wesnousky (2016), Steps and gaps in ground ruptures: Empirical bounds on rupture propagation, Bulletin of the Seismological Society of America, 106(3), 1110–1124, doi: 10.1785/0120150175.

Biasi, G. P., and S. G. Wesnousky (2017), Bends and ends of surface ruptures, Bulletin of the Seismological Society of America, 107 (6), 2543–2560, doi: 10.1785/0120160292.

Bloom, C. K., A. Howell, T. Stahl, C. Massey, and C. Singeisen (2022), The influence of off-fault deformation zones on the near-fault distribution of coseismic landslides, Geology, 50(3), 272–277, doi: 10.1130/g49429.1.

Bonali, F. L., A. Tibaldi, F. Marchese, L. Fallati, E. Russo, C. Corselli, and A. Savini (2019), UAV-based surveying in volcano-tectonics: An example from the Iceland rift, Journal of structural geology, 121, 46–64, doi: 10.1016/j.jsg.2019.02.004.

Bonini, L., R. Basili, G. Toscani, P. Burrato, S. Seno, and G. Valensise (2016), The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling, Tectonophysics, 684, 157–175, doi: 10.1016/J.TECTO.2015.12.015.

Bonini, L., U. Fracassi, N. Bertone, F. E. Maesano, G. Valensise, and R. Basili (2023), How do inherited dip-slip faults affect the development of new extensional faults? Insights from wet clay analog models, Journal of structural geology, 169(104836), 104,836, doi: 10.1016/j.jsg.2023.104836.

Brothers, D. S., N. W. Driscoll, G. M. Kent, A. J. Harding, J. M. Babcock, and R. L. Baskin (2009), Tectonic evolution of the Salton Sea inferred from seismic reflection data, Nature geoscience, 2(8), 581–584, doi: 10.1038/ngeo590.

Cesca, S., Y. Zhang, V. Mouslopoulou, R. Wang, J. Saul, M. Savage, S. Heimann, S.-K. Kufner, O. Oncken, and T. Dahm (2017), Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence, Earth and planetary science letters, 478, 110–120, doi: 10.1016/j.epsl.2017.08.024.

Chaipornkaew, L., H. Elston, M. Cooke, T. Mukerji, and S. A. Graham (2022), Predicting off-fault deformation from experimental strike-slip fault images using convolutional neural networks, Geophysical research letters, 49(2), doi: 10.1029/2021gl096854.

Chevalier, M.-L., P. Tapponnier, J. Van der Woerd, F. J. Ryerson, R. C. Finkel, and H. Li (2012), Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka, Tectonophysics, 530-531, 152–179, doi: 10.1016/j.tecto.2011.12.014.

Choi, E., L. Seeber, M. S. Steckler, and R. Buck (2011), One-sided transform basins and “inverted curtains”: Implications for releasing bends along strike-slip faults: ONE-SIDED TRANSFORM BASINS, Tectonics, 30(6), doi: 10.1029/2011tc002943.

Cooke, M. L., and N. J. van der Elst (2012), Rheologic testing of wet kaolin reveals frictional and bi-viscous behavior typical of crustal materials: RHEOLOGIC TESTING OF WET KAOLIN, Geophysical research letters, 39(1), 2011GL050,186, doi: 10.1029/2011gl050186.

Cooke, M. L., M. T. Schottenfeld, and S. W. Buchanan (2013), Evolution of fault efficiency at restraining bends within wet kaolin analog experiments, Journal of Structural Geology, 51, 180–192, doi: 10.1016/j.jsg.2013.01.010.

Crowell, B. W., Y. Bock, D. T. Sandwell, and Y. Fialko (2013), Geodetic investigation into the deformation of the Salton Trough: DEFORMATION OF THE SALTON TROUGH, Journal of geophysical research. Solid earth, 118(9), 5030–5039, doi: 10.1002/jgrb.50347.

DeGroot, D. J., and T. Lunne (2007), Measurement of Remoulded Shear Strength, Tech. Rep. 20061023-1, Norwegian Geotechnical Institute.

DeLong, S. B., J. J. Lienkaemper, A. J. Pickering, and N. N. Avdievitch (2015), Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California, Geosphere, 11(6), 2015–2030, doi: 10.1130/GES01189.1.

Dooley, T., and K. McClay (1997), Analog modeling of pull-apart basins, AAPG bulletin, 81, doi: 10.1306/3b05c636-172a-11d7-8645000102c1865d.

Dooley, T., K. McClay, and M. Bonora (1999), 4D evolution of segmented strike-slip fault systems: applications to NW Europe, in Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference, vol. 5, pp. 215–225, Geological Society of London, doi: 10.1144/0050215.

Dooley, T. P., and G. Schreurs (2012), Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results, Tectonophysics, 574-575, 1–71, doi: 10.1016/j.tecto.2012.05.030.

Douilly, R. (2023), Effect of asymmetric topography on rupture propagation along fault stepovers, Journal of geophysical research. Solid earth, 128(7), e2023JB026,484, doi: 10.1029/2023jb026484.

Duffy, B., M. Quigley, D. J. A. Barrell, R. Van Dissen, T. Stahl, S. Leprince, C. McInnes, and E. Bilderback (2013), Fault kinematics and surface deformation across a releasing bend during the 2010 MW 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying, Geological Society of America bulletin, 125(3-4), 420–431, doi: 10.1130/B30753.1.

Eisenstadt, G., and D. Sims (2005), Evaluating sand and clay models: do rheological differences matter?, Journal of structural geology, 27 (8), 1399–1412, doi: 10.1016/j.jsg.2005.04.010.

Elders, W. A., R. W. Rex, P. T. Robinson, S. Biehler, and T. Meidav (1972), Crustal Spreading in Southern California: The Imperial Valley and the Gulf of California formed by the rifting apart of a continental plate: The Imperial Valley and the Gulf of California formed by the rifting apart of a continental plate, Science (New York, N.Y.), 178(4056), 15–24, doi: 10.1126/science.178.4056.15.

Elston, H., M. Cooke, and A. Hatem (2022), Non-steady-state slip rates emerge along evolving restraining bends under constant loading, Geology, 50(5), 532–536, doi: 10.1130/g49745.1.

Fuis, G. S., W. D. Mooney, J. H. Healy, G. A. McMechan, and W. J. Lutter (1984), A seismic refraction survey of the Imperial Valley Region, California, Journal of geophysical research, 89(B2), 1165–1189, doi: 10.1029/jb089ib02p01165.

Gabriel, A., H. Elston, M. Cooke, and C. Ramos Sanchez (2025), Digital Image Correlation data from experiments of releasing bend evolution within different strength wet kaolin. GFZ Data Services, doi: 10.5880/fidgeo.2024.015.

Galland, O., H. S. Bertelsen, F. Guldstrand, L. Girod, R. F. Johannessen, F. Bjugger, S. Burchardt, and K. Mair (2016), Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models, Journal of geophysical research. Solid earth, 121(4), 2852–2872, doi: 10.1002/2015jb012564.

Gilligan, A., K. F. Priestley, S. W. Roecker, V. Levin, and S. S. Rai (2015), The crustal structure of the western Himalayas and Tibet: CRUSTAL STRUCTURE ACROSS

W. TIBET, Journal of geophysical research. Solid earth, 120(5), 3946–3964, doi: 10.1002/2015jb011891.

Graymer, R. W., V. E. Langenheim, R. W. Simpson, R. C. Jachens, and D. A. Ponce (2007), Relatively simple through-going fault planes at large-earthquake depth may be concealed by the surface complexity of strike-slip faults, Geological Society special publication, 290(1), 189–201, doi: 10.1144/sp290.5.

Hatem, A. E., M. L. Cooke, and E. H. Madden (2015), Evolving efficiency of restraining bends within wet kaolin analog experiments, Journal of geophysical research. Solid earth, 120(3), 1975–1992, doi: 10.1002/2014jb011735.

Hatem, A. E., M. L. Cooke, and K. Toeneboehn (2017), Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments, Journal of structural geology, 101, 96–108, doi: 10.1016/j.jsg.2017.06.011.

Hatem, A. E., N. G. Reitman, R. W. Briggs, R. D. Gold, J. A. Thompson Jobe, and R. J. Burgette (2022), Western U.s. geologic deformation model for use in the U.s. national Seismic Hazard Model 2023, Seismological research letters, 93(6), 3053–3067, doi: 10.1785/0220220154.

Hauksson, E., J. M. Stock, and A. L. Husker (2022), Seismicity in a weak crust: the transtensional tectonics of the Brawley Seismic Zone section of the Pacific–North America Plate Boundary in Southern California, USA, Geophysical journal international, 231(1), 717–735, doi: 10.1093/gji/ggac205.

Hempton, M. R., and K. Neher (1986), Experimental fracture, strain and subsidence patterns over en échelon strike-slip faults: implications for the structural evolution of pull-apart basins, Journal of structural geology, 8(6), 597–605, doi: 10.1016/0191-8141(86)90066-0.

Henza, A. A., M. O. Withjack, and R. W. Schlische (2010), Normal-fault development during two phases of non-coaxial extension: An experimental study, Journal of structural geology, 32(11), 1656–1667, doi: 10.1016/j.jsg.2009.07.007.

Hollingsworth, J., L. Ye, and J.-P. Avouac (2017), Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake: Mw7.8, 2016 Kaikoura Earthquake, Geophysical research letters, 44(8), 3517–3525, doi: 10.1002/2016gl072228.

Hubbert, M. K. (1937), Theory of scale models as applied to the study of geologic structures, Geological Society of America bulletin, 48(10), 1459–1520, doi: 10.1130/GSAB-48-1459.

Lacassin, R., F. Valli, N. Arnaud, P. H. Leloup, J. L. Paquette, L. Haibing, P. Tapponnier, M.-L. Chevalier, S. Guillot, G. Maheo, and X. Zhiqin (2004), Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet, Earth and planetary science letters, 219(3-4), 255–269, doi: 10.1016/s0012-821x(04)00006-8.

Lachenbruch, A. H., J. H. Sass, and S. P. Galanis (1985), Heat flow in southernmost California and the origin of the Salton Trough, Journal of geophysical research, 90(B8), 6709–6736, doi: 10.1029/JB090iB08p06709.

Lewis, T. J., R. D. Hyndman, and P. Flück (2003), Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics, Journal of geophysical research, 108(B6), 2002JB002,090, doi: 10.1029/2002JB002090.

Mann, P. (2007), Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems, Geological Society special publication, 290(1), 13–142, doi: 10.1144/sp290.2.

Meltzner, A. J., T. K. Rockwell, and L. A. Owen (2006), Recent and long-term behavior of the Brawley fault zone, imperial valley, California: An escalation in slip rate?, Bulletin of the Seismological Society of America, 96(6), 2304–2328, doi: 10.1785/0120050233.

Milliner, C., A. Donnellan, S. Aati, J.-P. Avouac, R. Zinke, J. F. Dolan, K. Wang, and R. Bürgmann (2021), Bookshelf kinematics and the effect of dilatation on fault zone inelastic deformation: Examples from optical image correlation measurements of the 2019 Ridgecrest earthquake sequence, Journal of geophysical research. Solid earth, 126(3), e2020JB020,551, doi: 10.1029/2020jb020551.

Mitra, S., and D. Paul (2011), Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models, AAPG bulletin, 95(7), 1147–1180, doi: 10.1306/09271010060.

Molnar, P., and P. Tapponnier (1981), A possible dependence of tectonic strength on the age of the crust in Asia, Earth and planetary science letters, 52(1), 107–114, doi: 10.1016/0012-821x(81)90213-2.

Nixon, C. W., D. J. Sanderson, and J. M. Bull (2011), Deformation within a strike-slip fault network at Westward Ho!, Devon U.K.: Domino vs conjugate faulting, Journal of structural geology, 33(5), 833–843, doi: 10.1016/j.jsg.2011.03.009.

Ozawa, S., R. Ando, and E. M. Dunham (2023), Quantifying the probability of rupture arrest at restraining and releasing bends using earthquake sequence simulations, Earth and planetary science letters, 617 (118276), 118,276, doi: 10.1016/j.epsl.2023.118276.

Priestley, K., J. Jackson, and D. McKenzie (2008), Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet, Geophysical journal international, 172(1), 345–362, doi: 10.1111/j.1365-246X.2007.03636.x.

Rahe, B., D. A. Ferrill, and A. P. Morris (1998), Physical analog modeling of pull-apart basin evolution, Tectonophysics, 285(1-2), 21–40, doi: 10.1016/s0040-1951(97)00193-5.

Rai, S. S., K. Priestley, V. K. Gaur, S. Mitra, M. P. Singh, and M. Searle (2006), Configuration of the Indian Moho beneath the NW Himalaya and Ladakh, Geophysical research letters, 33(15), L15,308, doi: 10.1029/2006GL026076.

Reber, J. E., M. L. Cooke, and T. P. Dooley (2020), What model material to use? A Review on rock analogs for structural geology and tectonics, Earth-science reviews, 202(103107), 103,107, doi: 10.1016/j.earscirev.2020.103107.

Ross, Z. E., B. Idini, Z. Jia, O. L. Stephenson, M. Zhong, X. Wang, Z. Zhan, M. Simons, E. J. Fielding, S.-H. Yun, E. Hauksson, A. W. Moore, Z. Liu, and J. Jung (2019), Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence, Science (New York, N.Y.), 366(6463), 346–351, doi: 10.1126/science.aaz0109.

Sanchez, V. I., M. A. Murphy, W. R. Dupre, L. Ding, and R. Zhang (2010), Structural evolution of the Neogene Gar Basin, western Tibet: Implications for releasing bend development and drainage patterns, Geological Society of America bulletin, 122(5-6), 926–945, doi: 10.1130/B26566.1.

Sylvester, A. G. (1988), Strike-slip faults, Geological Society of America bulletin, 100(11), 1666–1703, doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2.

Thielicke, W., and R. Sonntag (2021), Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab, Journal of open research software, 9(1), 12, doi: 10.5334/jors.334.

van Wijk, J., G. Axen, and R. Abera (2017), Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California, Tectonophysics, 719-720, 37–50, doi: 10.1016/j.tecto.2017.04.019.

von Hagke, C., M. Kettermann, N. Bitsch, D. Bücken, C. Weismüller, and J. L. Urai (2019), The effect of obliquity of slip in normal faults on distribution of open fractures, Frontiers in earth science, 7, 18, doi: 10.3389/feart.2019.00018.

Wang, H., M. Liu, J. Ye, J. Cao, and Y. Jing (2017), Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results, Tectonophysics, 721, 211–226, doi: 10.1016/j.tecto.2017.10.001.

Wang, H., M. Liu, B. Duan, and J. Cao (2020), Rupture propagation along stepovers of strike-slip faults: Effects of initial stress and fault geometry, Bulletin of the Seismological Society of America, 110(3), 1011–1024, doi: 10.1785/0120190233.

Wesnousky, S. G. (2006), Predicting the endpoints of earthquake ruptures, Nature, 444(7117), 358–360, doi: 10.1038/nature05275.

Withjack, M., and R. Schlische (2006), Geometric and experimental models of extensional fault-bend folds, Geological Society special publication, 253(1), 285–305, doi: 10.1144/GSL.SP.2006.253.01.15.

Withjack, M. O., and W. R. Jamison (1986), Deformation produced by oblique rifting, Tectonophysics, 126(2-4), 99–124, doi: 10.1016/0040-1951(86)90222-2.

Wu, J. E., K. McClay, P. Whitehouse, and T. Dooley (2009), 4D analogue modelling of transtensional pull-apart basins, Marine and petroleum geology, 26(8), 1608–1623, doi: 10.1016/j.marpetgeo.2008.06.007.

Xu, H., H. Lao, C. Peng, H. Xu, C. Liu, W. Sun, Y. Ju, and G. Dong (2023), Reacquainting the structural characteristics of pull-apart basins based on simulations with wet clay, Sustainability, 15(19), 14,143, doi: 10.3390/su151914143.

Yang, W., E. Hauksson, and P. Shearer (2012), Computing a large refined catalog of focal mechanisms for southern California (1981-2010): Temporal stability of the style of faulting, Bulletin of the Seismological Society of America, 102(3), 1179–1194, doi: 10.1785/0120110311.

Zinke, R., J. Hollingsworth, J. F. Dolan, and R. Van Dissen (2019), Three-dimensional surface deformation in the 2016 M7.8 Kaikōura, New Zealand, earthquake from optical image correlation: Implications for strain localization and long-term evolution of the pacific-Australian plate boundary, Geochemistry, geophysics, geosystems: G(3), 20(3), 1609–1628, doi: 10.1029/2018gc007951.