Local Strain Reorientation Explains Deformation of Rift-oblique Tectonic Lineaments Along the Main Ethiopian Rift
Main Article Content
Abstract
The interaction between the NE-SW striking Main Ethiopian Rift (MER) and the E-W oriented Yerer-Tullu Wellel Volcano-tectonic lineament (YTVL) represents one of the least understood tectonic problems in the East African Rift System. Despite the numerous studies that have been conducted in the region, the following questions still remain to be answered: did the MER and YTVL evolve simultaneously? Was there a change in plate motion direction to allow a diachronous evolution of the rift and the lineament? How does the E-W oriented YTVL remain active under ca. E-W oriented regional extension? Previous studies propose a two-phase tectonic evolution, involving a change in the direction of plate motion at around 6 Ma causing deformation to focus in the MER. However, this interpretation contradicts plate-tectonic reconstruction data suggesting a constant plate divergence direction since ca. 16 Ma. We use analogue models to study how deformation may occur along the YTVL. We find that the activation of lineaments oriented (near-)parallel to the plate divergence direction is in fact possible, if (1) the lineament sufficiently reduces the strength of the crust and (2) the main rift trend is sufficiently oblique to the overall plate divergence direction. We interpret this to be the result of a local reorientation of the regional extensional strain caused by the obliquity of the main rift, which allows for deformation along the otherwise unfavourably oriented lineament. As such, no multiphase scenario is required to explain the development of the YTVL, and a single-phase scenario that is in line with plate tectonic reconstructions can be adopted instead. Moreover, our model results suggest that other lineaments associated with the MER could also be active in the current tectonic regime. These insights may be of relevance to the interpretation of deformation along similar oblique structures associated with the MER, and with other past and present rift systems as well.
Article Details
References
Abbate, E., and M. Sagri (1980), Volcanites of Ethiopian and Somali Plateaus and major tectonic lines, Atti Convegni Lincei, 47, 219–227.
Abebe, T., F. Mazzarini, F. Innocenti, and P. Manetti (1998), The Yerer-Tullu Wellel volcanotectonic lineament: a transtensional structure in central Ethiopia and the associated magmatic activity, Journal of African earth sciences (Oxford, England: 1994), 26(1), 135–150, doi: 10.1016/s0899-5362(97)00141-3.
Abebe Adhana, T. (2014), The occurrence of a complete continental rift type of volcanic rocks suite along the Yerer–Tullu Wellel Volcano Tectonic Lineament, Central Ethiopia, Journal of African earth sciences (Oxford, England: 1994), 99, 374–385, doi: 10.1016/j.jafrearsci.2014.02.008.
Adam, J., J. L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. Lohrmann, S. Hoth, W. van der Zee, and J. Schmatz (2005), Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques, Journal of structural geology, 27 (2), 283–301, doi: 10.1016/j.jsg.2004.08.008.
Agostini, A., G. Corti, A. Zeoli, and G. Mulugeta (2009), Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models: CENTRIFUGE MODELS OF OBLIQUE RIFTING, Geochemistry, geophysics, geosystems: G(3), 10(11), doi: 10.1029/2009gc002676.
Agostini, A., M. Bonini, G. Corti, F. Sani, and F. Mazzarini (2011), Fault architecture in the Main Ethiopian Rift and comparison with experimental models: Implications for rift evolution and Nubia–Somalia kinematics, Earth and planetary science letters, 301(3-4), 479–492, doi: 10.1016/j.epsl.2010.11.024.
Bastow, I. D., A. A. Nyblade, G. W. Stuart, T. O. Rooney, and M. H. Benoit (2008), Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly: ETHIOPIAN UPPER MANTLE SEISMIC STRUCTURE, Geochemistry, geophysics, geosystems: G(3), 9(12), doi: 10.1029/2008gc002107.
Bonini, L., U. Fracassi, N. Bertone, F. E. Maesano, G. Valensise, and R. Basili (2023), How do inherited dip-slip faults affect the development of new extensional faults? Insights from wet clay analog models, Journal of structural geology, 169(104836), 104,836, doi: 10.1016/j.jsg.2023.104836.
Bonini, M., T. Souriot, M. Boccaletti, and J. P. Brun (1997), Successive orthogonal and oblique extension episodes in a rift zone: Laboratory experiments with application to the Ethiopian Rift, Tectonics, 16(2), 347–362, doi: 10.1029/96TC03935.
Brune, S., S. E. Williams, and R. D. Müller (2018), Oblique rifting: the rule, not the exception, Solid earth, 9(5), 1187–1206, doi: 10.5194/se-9-1187-2018.
Buck, W. R. (1991), Modes of continental lithospheric extension, Journal of geophysical research, 96(B12), 20,161–20,178, doi: 10.1029/91JB01485.
Byerlee, J. (1978), Friction of rocks, Pure and applied geophysics, 116(4-5), 615–626, doi: 10.1007/bf00876528.
Corti, G. (2008), Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift, Nature geoscience, 1(4), 258–262, doi: 10.1038/ngeo160.
Corti, G. (2009), Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa, Earth-science reviews, 96(1-2), 1–53, doi: 10.1016/j.earscirev.2009.06.005.
Corti, G., M. Philippon, F. Sani, D. Keir, and T. Kidane (2013), Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: comparison between the Main Ethiopian Rift and laboratory experiments, Terra nova, 25(5), 396–404, doi: 10.1111/ter.12049.
Corti, G., P. Molin, A. Sembroni, I. D. Bastow, and D. Keir (2018a), Control of pre-rift lithospheric structure on the architecture and evolution of continental rifts: Insights from the main Ethiopian rift, east Africa, Tectonics, 37 (2), 477–496, doi: 10.1002/2017tc004799.
Corti, G., F. Sani, S. Agostini, M. Philippon, D. Sokoutis, and E. Willingshofer (2018b), Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa), Tectonophysics, 728-729, 75–91, doi: 10.1016/j.tecto.2018.02.011.
Corti, G., F. Sani, A. A. Florio, T. Greenfield, D. Keir, A. Erbello, A. A. Muluneh, and A. Ayele (2020), Tectonics of the Asela-langano margin, main Ethiopian rift (east Africa), Tectonics, 39(8), e2020TC006,075, doi: 10.1029/2020tc006075.
Corti, G., D. Maestrelli, and F. Sani (2022), Large-to local-scale control of pre-existing structures on continental rifting: Examples from the Main Ethiopian Rift, East Africa, Frontiers in earth science, 10, doi: 10.3389/feart.2022.808503.
DeMets, C., and S. Merkouriev (2016), High-resolution estimates of Nubia–Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden, Geophysical journal international, 207 (1), 317–332, doi: 10.1093/gji/ggw276.
DeMets, C., and S. Merkouriev (2021), Detailed reconstructions of India-Somalia plate motion, 60 Ma to present: Implications for Somalia plate absolute motion and India-Eurasia plate motion, Geophysical journal international, 227 (3), 1730–1767, doi: 10.1093/gji/ggab295.
Erbello, A., G. Corti, A. Agostini, F. Sani, T. Kidane, and A. Buccianti (2016), Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: Implications for Nubia-Somalia kinematics, Journal of geodynamics, 102, 24–38, doi: 10.1016/j.jog.2016.07.002.
Fournier, M., and C. Petit (2007), Oblique rifting at oceanic ridges: Relationship between spreading and stretching directions from earthquake focal mechanisms, Journal of structural geology, 29(2), 201–208, doi: 10.1016/j.jsg.2006.07.017.
Hayward, N. J., and C. J. Ebinger (1996), Variations in the along-axis segmentation of the Afar Rift system, Tectonics, 15(2), 244–257, doi: 10.1029/95TC02292.
Henza, A. A., M. O. Withjack, and R. W. Schlische (2010), Normal-fault development during two phases of non-coaxial extension: An experimental study, Journal of structural geology, 32(11), 1656–1667, doi: 10.1016/j.jsg.2009.07.007.
Henza, A. A., M. O. Withjack, and R. W. Schlische (2011), How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?, Journal of structural geology, 33(9), 1312–1324, doi: 10.1016/j.jsg.2011.06.010.
Hubbert, M. K. (1937), Theory of scale models as applied to the study of geologic structures, Geological Society of America bulletin, 48(10), 1459–1520, doi: 10.1130/GSAB-48-1459.
Keep, M., and K. R. McClay (1997), Analogue modelling of multiphase rift systems, Tectonophysics, 273(3-4), 239–270, doi: 10.1016/s0040-1951(96)00272-7.
Keir, D., C. J. Ebinger, G. W. Stuart, E. Daly, and A. Ayele (2006), Strain accommodation by magmatism and faulting as rifting proceeds to breakup: Seismicity of the northern Ethiopian rift, Journal of geophysical research, 111(B5), doi: 10.1029/2005JB003748.
Keir, D., I. J. Hamling, A. Ayele, E. Calais, C. Ebinger, T. J. Wright, E. Jacques, K. Mohamed, J. O. S. Hammond, M. Belachew, E. Baker, J. V. Rowland, E. Lewi, and L. Bennati (2009), Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea rift in Afar, Geology, 37 (1), 59–62, doi: 10.1130/G25147A.1.
Keranen, K., and S. L. Klemperer (2008), Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts, Earth and planetary science letters, 265(1-2), 96–111, doi: 10.1016/j.epsl.2007.09.038.
Keranen, K. M., S. L. Klemperer, J. Julia, J. F. Lawrence, and A. A. Nyblade (2009), Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?, Geochemistry, geophysics, geosystems: G(3), 10(5), doi: 10.1029/2008GC002293.
Knappe, E., R. Bendick, C. Ebinger, Y. Birhanu, E. Lewi, M. Floyd, R. King, G. Kianji, N. Mariita, T. Temtime, B. Waktola, B. Deresse, M. Musila, J. Kanoti, and M. Perry (2020), Accommodation of east African rifting across the Turkana depression, Journal of geophysical research. Solid earth, 125(2), e2019JB018,469, doi: 10.1029/2019jb018469.
Korme, T., V. Acocella, and B. Abebe (2004), The role of pre-existing structures in the origin, propagation and architecture of faults in the main Ethiopian rift, Gondwana research: international geoscience journal, 7 (2), 467–479, doi: 10.1016/s1342-937x(05)70798-x.
Le Calvez, J. H., and B. C. Vendeville (2002), Experimental designs to model along-strike fault interaction, Journal of the virtual explorer, 07, 1441–8142, doi: 10.3809/jvirtex.2002.00043.
Maestrelli, D., D. Montanari, G. Corti, C. Del Ventisette, G. Moratti, and M. Bonini (2020), Exploring the interactions between rift propagation and inherited crustal fabrics through experimental modeling, Tectonics, 39(12), e2020TC006,211, doi: 10.1029/2020tc006211.
Merla, G., E. Abbate, A. Azzaroil, P. Bruni, P. Canuti, M. Fazzuoli, M. Sagri, and P. Tacconi (1980), A geological map of Ethiopia and Somalia at 1/2.000.000, and comment with a map of major landforms, Earth-science reviews, 16, 388, doi: 10.1016/0012-8252(80)90110-5.
Michon, L., and O. Merle (2000), Crustal structures of the Rhinegraben and the Massif Central grabens: An experimental approach, Tectonics, 19(5), 896–904, doi: 10.1029/2000TC900015.
Michon, L., V. Famin, and X. Quidelleur (2022), Evolution of the East African Rift System from trap-scale to plate-scale rifting, Earth-science reviews, 231(104089), 104,089, doi: 10.1016/j.earscirev.2022.104089.
Molnar, N., A. Cruden, and P. Betts (2020), The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments, Earth and planetary science letters, 544(116377), 116,377, doi: 10.1016/j.epsl.2020.116377.
Molnar, N. E., A. R. Cruden, and P. G. Betts (2019), Interactions between propagating rifts and linear weaknesses in the lower crust, Geosphere, 15(5), 1617–1640, doi: 10.1130/ges02119.1.
Mulugeta, G. (1988), Squeeze box in a centrifuge, Tectonophysics, 148(3-4), 323–335, doi: 10.1016/0040-1951(88)90139-4.
Muluneh, A. A., S. Brune, F. Illsley-Kemp, G. Corti, D. Keir, A. Glerum, T. Kidane, and J. Mori (2020), Mechanism for deep crustal seismicity: Insight from modeling of deformation processes at the Main Ethiopian Rift, Geochemistry, geophysics, geosystems: G(3), 21(7), e2020GC008,935, doi: 10.1029/2020gc008935.
Osagiede, E. E., M. Rosenau, A. Rotevatn, R. Gawthorpe, C. A.-L. Jackson, and M. Rudolf (2021), Influence of zones of pre-existing crustal weakness on strain localization and partitioning during rifting: Insights from analog modeling using high-resolution 3D digital image correlation, Tectonics, 40(10), e2021TC006,970, doi: 10.1029/2021tc006970.
Pérez-Gussinyé, M., M. Metois, M. Fernández, J. Vergés, J. Fullea, and A. R. Lowry (2009), Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics, Earth and planetary science letters, 287 (1-2), 152–167, doi: 10.1016/j.epsl.2009.08.004.
Ramberg, H. (1981), Gravity, deformation and the earth’s crust: In theory, experiments and geological application, 2 ed., Academic Press, San Diego, CA.
Rosenau, M., and A. Pohlenz (2023), Ring-shear test data of corundum sand “NKF120” used for analogue modelling in the experimental tectonics laboratory at GFZ Potsdam, doi: 10.5880/GFZ.4.1.2023.009.
Rosenau, M., A. Pohlenz, H. Kemnitz, and M. Warsitzka (2018), Ring-shear test data of quartz sand G12 used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam, doi: 10.5880/GFZ.4.1.2019.003.
Rudolf, M., D. Boutelier, M. Rosenau, G. Schreurs, and O. Oncken (2016), Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation, Tectonophysics, 684, 12–22, doi: 10.1016/j.tecto.2015.11.028.
Saria, E., E. Calais, D. S. Stamps, D. Delvaux, and C. J. H. Hartnady (2014), Present-day kinematics of the east African rift, Journal of geophysical research. Solid earth, 119(4), 3584–3600, doi: 10.1002/2013jb010901.
Schellart, W. P. (2000), Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling, Tectonophysics, 324(1-2), 1–16, doi: 10.1016/s0040-1951(00)00111-6.
Stamps, D. S., C. Kreemer, R. Fernandes, T. A. Rajaonarison, and G. Rambolamanana (2021), Redefining East African Rift System kinematics, Geology, 49(2), 150–155, doi: 10.1130/g47985.1.
Tommasini, S., P. Manetti, F. Innocenti, T. Abebe, M. Sintoni, and S. Conticelli (2005), The Ethiopian subcontinental mantle domains: geochemical evidence from Cenozoic mafic lavas, Mineralogy and petrology, 84(3-4), 259–281, doi: 10.1007/s00710-005-0081-9.
Tron, V., and J.-P. Brun (1991), Experiments on oblique rifting in brittle-ductile systems, Tectonophysics, 188(1-2), 71–84, doi: 10.1016/0040-1951(91)90315-j.
Wang, L., D. Maestrelli, G. Corti, Y. Zou, and Shen (2021), Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana depression, East Africa, Tectonophysics, 811(228870), 228,870, doi: 10.1016/j.tecto.2021.228870.
Weijermars, R., and H. Schmeling (1986), Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity), Physics of the earth and planetary interiors, 43(4), 316–330, doi: 10.1016/0031-9201(86)90021-x.
Withjack, M. O., and W. R. Jamison (1986), Deformation produced by oblique rifting, Tectonophysics, 126(2-4), 99–124, doi: 10.1016/0040-1951(86)90222-2.
Wolfenden, E., C. Ebinger, G. Yirgu, A. Deino, and Ayalew (2004), Evolution of the northern Main Ethiopian rift: birth of a triple junction, Earth and planetary science letters, 224(1-2), 213–228, doi: 10.1016/j.epsl.2004.04.022.
Zou, Y., D. Maestrelli, G. Corti, C. Del Ventisette, L. Wang, and C. Shen (2024), Influence of inherited brittle fabrics on continental rifting: Insights from centrifuge experimental modeling and application to the East African Rift System, Tectonics, 43(1), e2023TC007,947, doi: 10.1029/2023tc007947.
Zwaan, F., and G. Schreurs (2017), How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models, Interpretation, 5(1), SD119–SD138, doi: 10.1190/int-2016-0063.1.
Zwaan, F., and G. Schreurs (2020), Rift segment interaction in orthogonal and rotational extension experiments: Implications for the large-scale development of rift systems, Journal of structural geology, 140(104119), 104,119, doi: 10.1016/j.jsg.2020.104119.
Zwaan, F., and G. Schreurs (2023), The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study, Solid earth, 14(8), 823–845, doi: 10.5194/se-14-823-2023.
Zwaan, F., G. Schreurs, M. Ritter, T. Santimano, and M. Rosenau (2018a), Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of the University of Bern (CH), doi: 10.5880/FIDGEO.2018.023.
Zwaan, F., G. Schreurs, and J. Adam (2018b), Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques, Global and planetary change, 171, 110–133, doi: 10.1016/j.gloplacha.2017.11.002.
Zwaan, F., G. Schreurs, and S. J. H. Buiter (2019), A systematic comparison of experimental set-ups for modelling extensional tectonics, Solid earth, 10(4), 1063–1097, doi: 10.5194/se-10-1063-2019.
Zwaan, F., P. Chenin, D. Erratt, G. Manatschal, and G. Schreurs (2021), Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models, Solid earth, 12(7), 1473–1495, doi: 10.5194/se-12-1473-2021.
Zwaan, F., P. Chenin, D. Erratt, G. Manatschal, and G. Schreurs (2022), Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models, Basin research, 34(2), 824–854, doi: 10.1111/bre.12642.
Zwaan, F., A. A. Muluneh, J. Liu, E. Kosari, M. Rosenau, G. Corti, and F. Sani (2025), Results of analogue tectonic models of rifting and tectonic lineament reactivation along the Main Ethiopian Rift, doi: 10.5880/fidgeo.2025.041.