Investigating Global Correlations Between Earthquake-generated Tsunamis and Subduction Zone Characteristics
Main Article Content
Abstract
Tsunamigenic earthquakes pose a large hazard in subduction zones, but it is currently unclear in which - if any - tectonic setting they preferentially occur. Here, we compile the global Subduction Nature & Interconnected Tsunamigenic earthquake Characteristics (SNITCH) database with parameters on subduction geometry, tectonics, and megathrust seismicity, and 329 tsunami events caused by earthquakes that were recorded in subduction zones between 1962 and 2018. We aim to identify potential correlations between tsunamigenic earthquake behaviour and subduction zone characteristics. We first use a bivariate regression analysis to find first-order correlations between the normalised number of earthquake-generated tsunami events Nt and the megathrust seismicity and tectonic parameters characterising a subduction zone. We confirm self-evident correlations between Nt and the number and magnitude of earthquakes and subduction kinematics. We then apply a multivariate Fisher analysis to see which combination of tectonic parameters best distinguishes subduction zone segments in which relatively many and few tsunami events caused by earthquakes have occurred. Despite the scarcity of the tsunami data, we consistently find that the type of margin (i.e., erosional or accretionary), the trench-normal component of the subduction and convergence velocity, the amount of trench sediments, and the roughness of the incoming plate are related to the number of earthquake-generated tsunami events. Our results therefore suggest that tsunamigenic earthquakes may occur more frequently in tectonic settings where plates subduct relatively fast beneath a sediment-starved, erosional margin with a complex, shallow subduction interface, characterised by multiple faults and fractures.
Article Details
References
Bell, R., C. Holden, W. Power, X. Wang, and G. Downes (2014), Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount, Earth and Planetary Science Letters, 397, 1 – 9, doi: 10.1016/j.epsl.2014.04.005.
Bilek, S. L. (2010), The role of subduction erosion on seismicity, Geology, 38(5), 479–480, doi: 10.1130/focus052010.1.
Bletery, Q., A. M. Thomas, A. W. Rempel, L. Karlstrom, A. Sladen, and L. De Barros (2016), Mega-earthquakes rupture flat megathrusts, Science, 354(6315), 1027–1031.
Brizzi, S., L. Sandri, F. Funiciello, F. Corbi, C. Piromallo, and A. Heuret (2018), Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes, Tectonophysics, 728, 92–103, doi: 10.1016/j.tecto.2018.01.027.
Brizzi, S., I. Van Zelst, F. Funiciello, F. Corbi, and Y. van Dinther (2020), How sediment thickness influences subduction dynamics and seismicity, Journal of Geophysical Research: Solid Earth, 125(8), e2019JB018,964, doi: 10.1029/2019JB018964.
Carvajal, M., T. Sun, K. Wang, H. Luo, and Y. Zhu (2022), Evaluating the Tsunamigenic Potential of Buried Versus Trench-Breaching Megathrust Slip, Journal of Geophysical Research: Solid Earth, 127 (8), e2021JB023,722, doi: 10.1029/2021JB023722.
Cisternas, M., B. F. Atwater, F. Torrejón, Y. Sawai, G. Machuca, M. Lagos, A. Eipert, C. Youlton, I. Salgado, T. Kamataki, et al. (2005), Predecessors of the giant 1960 Chile earthquake, Nature, 437 (7057), 404.
Clift, P., and P. Vannucchi (2004), Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Reviews of Geophysics, 42(2), doi: 10.1029/2003RG000127.
Corbi, F., F. Funiciello, S. Brizzi, S. Lallemand, and M. Rosenau (2017), Control of asperities size and spacing on seismic behavior of subduction megathrusts, Geophysical Research Letters, 44, doi: 10.1002/2017GL074182.
Crameri, F. (2018), Scientific colour-maps, doi: 10.5281/zenodo.1243862.
Crameri, F., G. E. Shephard, and P. J. Heron (2020), The misuse of colour in science communication, Nature communications, 11(1), 1–10.
DeDontney, N., and J. R. Rice (2012), Tsunami wave analysis and possibility of splay fault rupture during the 2004 Indian Ocean earthquake, Pure and applied geophysics, 169(10), 1707–1735, doi: 10.1007/s00024-011-0438-4.
Delouis, B., J.-M. Nocquet, and M. Vallée (2010), Slip distribution of the February 27, 2010 Mw= 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data, Geophysical Research Letters, 37 (17), doi: 10.1029/2010GL043899.
DeMets, C., R. G. Gordon, D. Argus, and S. Stein (1990), Current plate motions, Geophysical journal international, 101(2), 425–478, doi: 10.1111/j.1365-246X.1990.tb06579.x.
Dominguez, S., S. Lallemand, J. Malavieille, and R. von Huene (1998), Upper plate deformation associated with seamount subduction, Tectonophysics, 293(3-4), 207–224, doi: 10.1016/S0040-1951(98)00086-9.
Duda, R. O., P. E. Hart, and D. G. Stork (1973), Pattern classification and scene analysis, vol. 3, Wiley New York.
Fan, W., D. Bassett, J. Jiang, P. M. Shearer, and C. Ji (2017), Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults, Tectonophysics, 721, 143–150, doi: 10.1016/j.tecto.2017.10.003.
Fujii, Y., K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa (2011), Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth, planets and space, 63(7), 55, doi: 10.5047/eps.2011.06.010.
Fukao, Y. (1979), Tsunami earthquakes and subduction processes near deep-sea trenches, Journal of Geophysical Research: Solid Earth, 84(B5), 2303–2314, doi: 10.1029/JB084iB05p02303.
Gahalaut, V., C. Subrahmanyam, B. Kundu, J. Catherine, and A. Ambikapathy (2010), Slow rupture in Andaman during 2004 Sumatra–Andaman earthquake: a probable consequence of subduction of 90E ridge, Geophysical Journal International, 180(3), 1181–1186, doi: 10.1111/j.1365-246X.2009.04449.x.
Geersen, J. (2019), Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes, Tectonophysics, 762, 28–44, doi: 10.1016/j.tecto.2019.04.024.
Global Historical Tsunami Database (Retrieved: February 1, 2019), National Geophysical Data Center / World Data Service (NGDC/WDS), https://doi.org/10.7289/V5PN93H7.
Goldfinger, C., C. H. Nelson, J. E. Johnson, and S. S. Party (2003), Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites, Annual Review of Earth and Planetary Sciences, 31(1), 555–577, doi: 10.1146/annurev.earth.31.100901.141246
Goldfinger, C., Y. Ikeda, R. S. Yeats, and J. Ren (2013), Superquakes and supercycles, Seismological Research Letters, 84(1), 24–32, doi: 10.1785/0220110135.
Gusiakov, V. K., P. K. Dunbar, and N. Arcos (2019), Twenty-five years (1992–2016) of global tsunamis: Statistical and analytical overview, Pure and Applied Geophysics, pp. 1–13, doi: 10.1007/s00024-019-02113-7.
Gutenberg, B., and C. F. Richter (1956), Magnitude and energy of earthquakes, Annals of Geophysics, 9(1), 1–15, doi: 10.4401/ag-5590.
Hananto, N., F. Leclerc, L. Li, M. Etchebes, H. Carton, P. Tapponnier, Y. Qin, P. Avianto, S. Singh, and S. Wei (2020), Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust, Earth and Planetary Science Letters, 538, 116,197, doi: 10.1016/j.epsl.2020.116197.
Hayes, G. P. (2017), The finite, kinematic rupture properties of great-sized earthquakes since 1990, Earth and Planetary Science Letters, 468, 94–100, doi: 10.1016/j.epsl.2017.04.003.
Hayes, G. P., D. J. Wald, and R. L. Johnson (2012), Slab1.0: A three-dimensional model of global subduction zone geometries, Journal of Geophysical Research: Solid Earth, 117 (B1), doi: 10.1029/2011JB008524.
Heidarzadeh, M., and K. Satake (2015), New insights into the source of the Makran tsunami of 27 November 1945 from tsunami waveforms and coastal deformation data, Pure and Applied Geophysics, 172, 621–640, doi: 10.1007/s00024-014-0948-y.
Heuret, A., S. Lallemand, F. Funiciello, C. Piromallo, and C. Faccenna (2011), Physical characteristics of subduction interface type seismogenic zones revisited, Geochemistry, Geophysics, Geosystems, 12(1), doi: 10.1029/2010GC003230.
Heuret, A., C. Conrad, F. Funiciello, S. Lallemand, and L. Sandri (2012), Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain, Geophysical Research Letters, 39(5), doi: 10.1029/2011GL050712.
Hubbard, J., S. Barbot, E. M. Hill, and P. Tapponnier (2015), Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard, Earth-Science Reviews, 141, 45–55, doi: 10.1016/j.earscirev.2014.11.003.
Jiang, Y., P. J. González, and R. Bürgmann (2022), Subduction earthquakes controlled by incoming plate geometry: The 2020 M> 7.5 Shumagin, Alaska, earthquake doublet, Earth and Planetary Science Letters, 584, 117,447, doi: 10.1016/j.epsl.2022.117447.
Kanamori, H. (1971), Seismological evidence for a lithospheric normal faulting – The Sanriku earthquake of 1933, Physics of the Earth and Planetary Interiors, 4(4), 289–300, doi: 10.1016/0031-9201(71)90013-6.
Kanamori, H. (1972a), Mechanism of tsunami earthquakes, Physics of the earth and planetary interiors, 6(5), 346–359, doi: 10.1016/0031-9201(72)90058-1.
Kanamori, H. (1972b), Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes, Physics of the Earth and Planetary Interiors, 5, 129–139, doi: 10.1016/0031-9201(72)90082-9.
Kanamori, H., and J. J. Cipar (1974), Focal process of the great Chilean earthquake May 22, 1960, Physics of the Earth and Planetary Interiors, 9(2), 128–136, doi: 10.1016/0031-9201(74)90029-6.
Lallemand, S., M. Peyret, E. Van Rijsingen, D. Arcay, and A. Heuret (2018), Roughness characteristics of oceanic seafloor prior to subduction in relation to the seismogenic potential of subduction zones, Geochemistry, Geophysics, Geosystems, 19(7), 2121–2146, doi: 10.1029/2018GC007434.
Lay, T., H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, et al. (2005), The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308(5725), 1127–1133, doi: 10.1126/science.1112250.
López, A. M., and E. A. Okal (2006), A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’earthquake, Geophysical Journal International, 165(3), 835–849, doi: 10.1111/j.1365-246X.2006.02899.x.
Ma, S., and S. Nie (2019), Dynamic Wedge Failure and Along-Arc Variations of Tsunamigenesis in the Japan Trench Margin, Geophysical Research Letters, doi: 10.1029/2019GL083148.
McCaffrey, R. (2008), Global frequency of magnitude 9 earthquakes, Geology, 36(3), 263–266, doi: 10.1130/G24402A.1.
Melnick, D., M. Moreno, M. Motagh, M. Cisternas, and R. L. Wesson (2012), Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake, Geology, 40(3), 251–254, doi: 10.1130/G32712.1.
Meng, Q., and B. Duan (2023), Do upper-plate material properties or fault frictional properties play more important roles in tsunami earthquake characteristics?, Tectonophysics, 850, 229,765, doi: 10.1016/j.tecto.2023.229765.
Oryan, B., and W. R. Buck (2020), Larger tsunamis from megathrust earthquakes where slab dip is reduced, Nature Geoscience, 13(4), 319–324, doi: 10.1038/s41561-020-0553-x.
Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire (2011), Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475(7356), 373, doi: 10.1038/nature10227.
Polet, J., and H. Kanamori (2000), Shallow subduction zone earthquakes and their tsunamigenic potential, Geophysical Journal International, 142(3), 684–702, doi: 10.1046/j.1365-246x.2000.00205.x.
Qiu, Q., and S. Barbot (2022), Tsunami excitation in the outer wedge of global subduction zones, Earth-science reviews, 230, 104,054, doi: 10.1016/j.earscirev.2022.104054.
Robinson, D., S. Das, and A. Watts (2006), Earthquake rupture stalled by a subducting fracture zone, Science, 312(5777), 1203–1205, doi: 10.1126/science.1125771.
Ruff, L., and H. Kanamori (1980), Seismicity and the subduction process, Physics of the Earth and Planetary Interiors, 23(3), 240–252, doi: 10.1016/0031-9201(80)90117-X.
Ruff, L. J. (1989), Do trench sediments affect great earthquake occurrence in subduction zones?, in Subduction Zones Part II, pp. 263–282, Springer, doi: 10.1007/BF00874629.
Ruh, J. B., V. Sallarès, C. R. Ranero, and T. Gerya (2016), Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling, Journal of Geophysical Research: Solid Earth, 121(9), 6880–6902, doi: 10.1002/2016JB013250.
Sandri, L., W. Marzocchi, and L. Zaccarelli (2004), A new perspective in identifying the precursory patterns of eruptions, Bulletin of volcanology, 66(3), 263–275, doi: 10.1007/s00445-003-0309-7.
Satake, K. (2015), 4.19 - Tsunamis, in Treatise on Geophysics, edited by G. Schubert, second ed., pp. 477 – 504, Elsevier, Oxford, doi: 10.1016/B978-0-444-53802-4.00086-5.
Satake, K., and B. F. Atwater (2007), Long-term perspectives on giant earthquakes and tsunamis at subduction zones, Annu. Rev. Earth Planet. Sci., 35, 349–374, doi: 10.1146/annurev.earth.35.031306.140302.
Satake, K., and Y. Tanioka (1999), Sources of tsunami and tsunamigenic earthquakes in subduction zones, Pure and Applied Geophysics, 154(3-4), 467–483, doi: 10.1007/s000240050240.
Scholl, D. W., S. H. Kirby, R. von Huene, H. Ryan, R. E. Wells, and E. L. Geist (2015), Great (≥ Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor, Geosphere, 11(2), 236–265, doi: 10.1130/GES01079.1.
Seno, T. (2002), Tsunami earthquakes as transient phenomena, Geophysical Research Letters, 29(10), doi: 10.1029/2002GL014868.
Sibuet, J.-C., C. Rangin, X. Le Pichon, S. Singh, A. Cattaneo, D. Graindorge, F. Klingelhoefer, J.-Y. Lin, J. Malod, T. Maury, et al. (2007), 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra, Earth and Planetary Science Letters, 263(1-2), 88–103, doi: 10.1016/j.epsl.2007.09.005.
Sieh, K., D. H. Natawidjaja, A. J. Meltzner, C.-C. Shen, H. Cheng, K.-S. Li, B. W. Suwargadi, J. Galetzka, B. Philibosian, and R. L. Edwards (2008), Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra, Science, 322(5908), 1674–1678, doi: 10.1126/science.1163589.
Sladen, A., and J. Trevisan (2018), Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature, Earth and Planetary Science Letters, 483, 105–113, doi: 10.1016/j.epsl.2017.12.006.
Storchak, D. A., D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W. H. Lee, A. Villaseñor, and P. Bormann (2013), Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009), Seismological Research Letters, 84(5), 810–815, doi: 10.1785/0220130034.
Tanioka, Y., and T. Seno (2001), Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake, Geophysical Research Letters, 28(17), 3389–3392, doi: 10.1029/2001GL013149.
Tanioka, Y., L. Ruff, and K. Satake (1997), What controls the lateral variation of large earthquake occurrence along the Japan Trench?, Island Arc, 6(3), 261–266, doi: 10.1111/j.1440-1738.1997.tb00176.x.
Titov, V., A. B. Rabinovich, H. O. Mofjeld, R. E. Thomson, and F. I. González (2005), The global reach of the 26 December 2004 Sumatra tsunami, Science, 309(5743), 2045–2048, doi: 10.1126/science.1114576.
Van Rijsingen, E., S. Lallemand, M. Peyret, D. Arcay, A. Heuret, F. Funiciello, and F. Corbi (2018), How subduction interface roughness influences the occurrence of large interplate earthquakes, Geochemistry, Geophysics, Geosystems, 19(8), 2342–2370, doi: 10.1029/2018GC007618.
Van Zelst, I. (2025), Data & scripts for ‘Investigating global correlations between earthquake-generated tsunamis and subduction zone characteristics’, doi: 10.5281/zenodo.7118751.
Van Zelst, I., L. Rannabauer, A.-A. Gabriel, and Y. van Dinther (2022), Earthquake Rupture on Multiple Splay Faults and Its Effect on Tsunamis, Journal of Geophysical Research: Solid Earth, 127 (8), e2022JB024,300, doi: 10.1029/2022JB024300.
von Huene, R., J. J. Miller, D. Klaeschen, and P. Dartnell (2016), A possible source mechanism of the 1946 Unimak Alaska far-field tsunami: uplift of the mid-slope terrace above a splay fault zone, in Global Tsunami Science: Past and Future, Volume I, pp. 4189–4201, Springer, doi: 10.1007/s00024-016-1393-x.
Waldhauser, F., D. P. Schaff, T. Diehl, and E. R. Engdahl (2012), Splay faults imaged by fluid-driven aftershocks of the 2004 Mw 9.2 Sumatra-Andaman earthquake, Geology, 40(3), 243–246, doi: 10.1130/G32420.1.
Wang, K., and S. L. Bilek (2011), Do subducting seamounts generate or stop large earthquakes?, Geology, 39(9), 819–822, doi: 10.1130/G31856.1.
Wang, K., and S. L. Bilek (2014), Invited review paper: Fault creep caused by subduction of rough seafloor relief, Tectonophysics, 610, 1–24, doi: 10.1016/j.tecto.2013.11.024.
Wang, Z., and J. Lin (2022), Role of fluids and seamount subduction in interplate coupling and the mechanism of the 2021 Mw 7.1 Fukushima-Oki earthquake, Japan, Earth and Planetary Science Letters, 584, 117,439, doi: 10.1016/j.epsl.2022.117439.
Wendt, J., D. D. Oglesby, and E. L. Geist (2009), Tsunamis and splay fault dynamics, Geophysical Research Letters, 36(15), doi: 10.1029/2009GL038295.
Ye, L., T. Lay, H. Kanamori, and L. Rivera (2016), Rupture characteristics of major and great (Mw 7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence, Journal of Geophysical Research: Solid Earth, 121(2), 845–863, doi: 10.1002/2015JB012427.
Yokota, Y., T. Ishikawa, S.-i. Watanabe, T. Tashiro, and A. Asada (2016), Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone, Nature, 534(7607), 374, doi: 10.1038/nature17632.