The Saxo-Thuringian Basin of the Central European Variscides: Subsurface Characterization of a Lateral Foreland Basin Based on an Integrated Geophysical Data Set

Main Article Content

Hamed Fazlikhani
Uwe Kroner
Harald Stollhofen
Wolfgang Bauer
Daniel koehn

Abstract

The lateral extent of subsurface structures and lithologies of ancient orogenies are frequently obscured by younger units, which restricts our understanding of orogenic processes. In these regions, subsurface characterization can be conducted through the integration, interpretation, and modelling of geophysical and geological data. In this case study, we examine the lateral extent of the Variscan Saxo-Thuringian Basin, which formed during the early Carboniferous and is partly exposed in the NW Bohemian Massif. West of the Bohemian Massif, the architecture of the entire Saxo-Thuringian Basin and surrounding basement units remain elusive due to the complete coverage by post-Variscan sedimentary rocks. The low magnetic field intensity signature of the exposed portion of the Saxo-Thuringian Basin, in combination with information from basement drilled wells and observed seismic reflection facies, is used to define the western extent of the basin covered by Permian-Mesozoic units. Integrated geological and geophysical data interpretation and modelling show the geometry of the Saxo-Thuringian Basin as a 60 km long and 60 km wide area west of the Bohemian Massif. Regional Bouguer gravity anomalies are related to the folding and thrusting of basement rocks and emplacement of orogenic granites, while local anomalies are interpreted as Permian fault-bounded graben and half-graben structures. The Saxo-Thuringian Basin is developed in an upper plate position as part of a strike-slip dominated segment of the Gondwana-Laurussia plate boundary zone on a “low-strain” zone. Due to its lateral position relative to the collisional pile of the Bohemian Massif, we define it as a “lateral foreland” basin.

Article Details

How to Cite
Fazlikhani, H., Kroner, U., Stollhofen, H., Bauer, W., & koehn, D. (2025). The Saxo-Thuringian Basin of the Central European Variscides: Subsurface Characterization of a Lateral Foreland Basin Based on an Integrated Geophysical Data Set. τeκτoniκa, 3(1), 123–142. https://doi.org/10.55575/tektonika2025.3.1.89
Section
Articles

References

Andreas, D. (2013), Der Thüringer Wald im Zeitraum der Stefan-Unterperm-Entwicklung - ein Abschnitt der Zentraleuropäischen N-S-Riftzone innerhalb des Mitteleuropäischen Großschollenscharniers, Ph.D. thesis, Technical University of Freiberg, Freiberg, Germany.

Andreas, D., H. Haubold, and G. Katzung (1975), ZUR GRENZE STEFAN/AUTUN (KARBON/PERM), Zeitschrift für Geologische Wissenschaften, 3(6), 699 A 716.

Anthes, G., and T. Reischmann (2001), Timing of granitoid magmatism in the eastern mid-German crystalline rise, Journal of geodynamics, 31(2), 119–143, doi: 10.1016/s0264-3707(00)00024-7.

Bosum, W., U. Casten, F. C. Fieberg, I. Heyde, and H. C. Soffel (1997), Three-dimensional interpretation of the KTB gravity and magnetic anomalies, Journal of geophysical research, 102(B8), 18,307–18,321, doi: 10.1029/96jb03407.

Brosin, P., and H. Lützner (2012), Verdeckte Rotliegend-Vorkommen zwischen Thüringer Wald und Harz, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, pp. 488–503.

Busby, C., and R. Ingersoll (1995), Tectonics of sedimentary basins, Oxford, Blackwell Science. De Wall, H., and H. Stollhofen (2016), Erkundung des geologischen Untergrundes in Nordost-Bayern als Grundlage zur Bewertung des geothermischen Potenzials. Abschlussbericht März 2016, GeoZentrum Nordbayern, Erlangen.

De Wall, H., and H. Stollhofen (2017), Erkundung des geologischen Untergrundes in Nordost-Bayern als Grundlage zur Bewertung des geothermischen Potenzials. Abschlussbericht der Projektverlängerung (3. Jahr), GeoZentrum Nordbayern, Erlangen.

de Wall, H., A. Schaarschmidt, M. Kämmlein, G. Gabriel, M. Bestmann, and L. Scharfenberg (2019), Subsurface granites in the Franconian Basin as the source of enhanced geothermal gradients: a key study from gravity and thermal modeling of the Bayreuth Granite, International journal of earth sciences, 108(6), 1913–1936, doi: 10.1007/s00531-019-01740-8.

DEKORP Research Group (1988), Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations, Journal of Geophysics, 62, 69–101.

DEKORP Research Group (1994a), Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90(East), Zeitschrift für Geologische Wissenschaften, 22(6), 647–769.

DEKORP Research Group (1994b), DEKORP 3/MVE 90(West) - preliminary geological interpretation of a deep near-vertical reflection profile between the Rhenish and Bohemian Massifs, Germany, Zeitschrift für Geologische Wissenschaften, 22(6), 771–801.

Drews, M., W. Bauer, H. Fazlikhani, H. Stollhofen, M. Kämmlein, M. Potten, K. Thuro, and H. de Wall (2019), Ursachenforschung zur geothermischen Anomalie in Nordbayern, Geothermische Energie, 91, 10–13.

Eberts, A., H. Fazlikhani, W. Bauer, H. Stollhofen, H. de Wall, and G. Gabriel (2021), Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe, Solid earth, 12(10), 2277–2301, doi: 10.5194/se-12-2277-2021.

Eckhardt, F. J. (1962), Über einen Natronsyenit im kristallinen Untergrund Unterfrankens, Neues Jahrbuch für Mineralogie, Monatshefte, 1962, 109–114.

Edel, J. B., and K. Weber (1995), Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence, Geologische Rundschau, 84(2), 412–432, doi: 10.1007/bf00260450.

Eder, F. W., W. Engel, W. Franke, and P. M. Sadler (1983), Devonian and carboniferous limestone-turbidites of the rheinisches schiefergebirge and their tectonic significance, in Intracontinental Fold Belts, edited by H. Martin and F. W. Eder, pp. 93–124, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-642-69124-9_5.

Enderle, U., K. Schuster, C. Prodehl, A. Schulze, and J. Bribach (1998), The refraction seismic experiment GRANU95 in the Saxothuringian belt, southeastern Germany, Geophysical journal international, 133(2), 245–259, doi: 10.1046/j.1365-246X.1998.00462.x.

Falk, F., W. Franke, and M. Kurze (1995), Stratigraphy, in Pre-Permian Geology of Central and Eastern Europe, edited by R. D. Dallmeyer, W. Franke, and K. Weber, pp. 221–234, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-642-77518-5_23.

Fazlikhani, H., H. Fossen, R. L. Gawthorpe, J. I. Faleide, and R. E. Bell (2017), Basement structure and its influence on the structural configuration of the northern North Sea rift, Tectonics, 36(6), 1151–1177, doi: 10.1002/2017TC004514.

Fazlikhani, H., W. Bauer, and H. Stollhofen (2022), Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany, Solid earth, 13(2), 393–416, doi: 10.5194/se-13-393-2022.

Franke, W. (1984a), Variszischer Deckenbau im Raume der Münchberger Gneismasse - abgeleitet aus der Fazies, Deformation und Metamorphose im umgebenden Paläozoikum, Geotektonische Forschungen, Schweizerbart’sche, E, Stuttgart, Germany.

Franke, W. (1984b), Late events in the tectonic history of the Saxothuringian zone, Geological Society special publication, 14(1), 33–45, doi: 10.1144/gsl.sp.1984.014.01.04.

Franke, W. (1989), Tectonostratigraphic units in the Variscan belt of central Europe, in Terranes in the Circum-Atlantic Paleozoic Orogens, Geological Society of America Special Papers, vol. 230, edited by R. D. Dallmeyer, pp. 67–90, Geological Society of America, doi: 10.1130/spe230-p67.

Franke, W., and E. Stein (2000), Exhumation of high-grade rocks in the Saxo-Thuringian Belt: geological constraints and geodynamic concepts, Geological Society special publication, 179(1), 337–354, doi: 10.1144/gsl.sp.2000.179.01.20.

Franke, W., R. D. Dallmeyer, and K. Weber (1995), Geodynamic Evolution, in Pre-Permian Geology of Central and Eastern Europe, edited by R. D. Dallmeyer, W. Franke, and K. Weber, pp. 579–593, Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-642-77518-5_57.

Gabriel, G., D. Vogel, R. Scheibe, H. Lindner, R. Pucher, T. Wonik, and C. M. Krawczyk (2011), Anomalies of the Earth’s total magnetic field in Germany - the first complete homogenous data set reveals new opportunities for multiscale geoscientific studies: Magnetic anomalies in Germany, Geophysical journal international, 184(3), 1113–1118, doi: 10.1111/j.1365-246x.2010.04924.x.

Gandl, J. (1998), Neue Daten zum jüngeren Paläozoikum Nordost-Bayerns und angrenzender Gebiete – Faziesentwicklung und geotektonische Konsequenzen, Geologica Bavarica, 103, 19–272.

Gräbe, R., and K. Wucher (1967), Schüttungs- und Strömungsrichtungen im Kulm des SE-Teils der Ziegenrücker Mulde (Ostthüringisches Schiefergebirge), Geologie mediterraneenne, 16, 991–1006.

Hahn, T., U. Kroner, and P. Mezer (2010), Lower Carboniferous synorogenic sedimentation in the Saxo-Thuringian Basin and the adjacent Allochthonous Domain, in Pre-Mesozoic geology of Saxo-Thuringia, edited by U. Linnemann and R. L. Romer, pp. 171–192, Schweizerbart, Stuttgart.

Hallas, P., J. A. Pfänder, U. Kroner, and B. Sperner (2021), Microtectonic control of 40Ar/39Ar white mica age distributions in metamorphic rocks (Erzgebirge, N-Bohemian Massif): Constraints from combined step heating and multiple single grain total fusion experiments, Geochimica et cosmochimica acta, 314, 178–208, doi: 10.1016/j.gca.2021.08.043.

Helmkampf, K. (2006), Profilvergleich und sedimentologische Entwicklung im Umkreis der Forschungsbohrungen Spitzeichen 1 und Lindau 1, Geologica Bavarica, 109, 63–94.

Hofmann, Y. (2003), Gravimetrische und geodynamische Modellierungen in der Schwarmbeben-Region Vogtland/NW-Böhmen, Ph.D. thesis, Friedrich-Schiller-Universität Jena, Jena Germany.

Hofmann, Y., T. Jahr, and G. Jentzsch (2003), Three-dimensional gravimetric modelling to detect the deep structure of the region Vogtland/NW-Bohemia, Journal of geodynamics, 35(1-2), 209–220, doi: 10.1016/s0264-3707(02)00063-7.

Hurich, C. A., and Y. Kristoffersen (1988), Deep structure of the Caledonide orogen in southern Norway: new evidence from marine seismic reflection profiling, Special publication.

Jouvent, M., O. Lexa, V. Peřestý, and P. Jeřábek (2022), New constraints on the tectonometamorphic evolution of the Erzgebirge orogenic wedge (Saxothuringian Domain, Bohemian Massif), Journal of metamorphic geology, 40(4), 687–715, doi: 10.1111/jmg.12643.

Judersleben, G. (1972), Zur Petrologie des sedimentären Rotliegenden im Thüringer Wald und seinem Vorland, Jb. Geol, 4, 181–289.

Juhlin, C., P. Hedin, D. G. Gee, H. Lorenz, T. Kalscheuer, and P. Yan (2016), Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden, Solid earth, 7 (3), 769–787, doi: 10.5194/se-7-769-2016.

Kley, J., and T. Voigt (2008), Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision, Geology, 36(11), 839–842, doi: 10.1130/G24930A.1.

Kossmat, F. (1927), Gliederung des varistischen Gebirgsbaues, Abhandlungen des Sächsischen Geologischen Landesamtes, 1, 1–39.

Krawczyk, C. M., E. Stein, S. Choi, G. Oettinger, K. Schuster, H.-J. Götze, V. Haak, O. Oncken, C. Prodehl, and A. Schulze (2000), Geophysical constraints on exhumation mechanisms of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone, Geological Society special publication, 179(1), 303–322, doi: 10.1144/gsl.sp.2000.179.01.18.

Krohe, A. (1992), Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms, Tectonophysics, 205(4), 357–386, doi: 10.1016/0040-1951(92)90443-a.

Kroner, U., and R. L. Romer (2010), The Saxo-Thuringian Zone - tip of the Armorican Spur and part of the Gondwana plate, in Pre-Mesozoic Geology of Saxo-Thuringia: From the Cadomian Active Margin to the Variscan Orogen, edited by U. Linnemann and R. L. Romer, pp. 371–394, Schweizerbart, Stuttgart.

Kroner, U., and R. L. Romer (2013), Two plates — Many subduction zones: The Variscan orogeny reconsidered, Gondwana research: international geoscience journal, 24(1), 298–329, doi: 10.1016/j.gr.2013.03.001.

Kroner, U., T. Hahn, R. L. Romer, and U. Linnemann (2007), The Variscan orogeny in the Saxo-Thuringian zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust, in The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, vol. 31, edited by U. Linnemann, R. D. Nance, P. Kraft, and G. Zulauf, pp. 153–172, Geological Society of America, doi: 10.1130/2007.2423(06).

Kroner, U., J.-L. Mansy, S. Mazur, P. Aleksandrowski, H. P. Hann, H. Huckriede, F. Lacquement, J. Lamarche, P. Ledru, T. C. Pharaoh, H. Zedler, A. Zeh, and G. Zulauf (2008), Variscan tectonics, in The Geology of Central Europe Volume 1: Precambrian and Palaeozoic, edited by T. McCann, pp. 599–664, The Geological Society of London, London, doi: 10.1144/cev1p.11.

Kroner, U., M. Roscher, and R. L. Romer (2016), Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana–Laurussia convergence, Tectonophysics, 681, 220–233, doi: 10.1016/j.tecto.2016.03.034.

Kroner, U., T. Stephan, and R. L. Romer (2022), Paleozoic orogenies and relative plate motions at the sutures of the Iapetus-Rheic Ocean, in New Developments in the Appalachian-Caledonian-Variscan Orogen, vol. 554, edited by Y. D. Kuiper, J. B. Murphy, R. D. Nance, R. A. Strachan, and M. D. Thompson, pp. 1–23, Geological Society of America, doi: 10.1130/2021.2554(01).

Kröner, A., P. Jaeckel, T. Reischmann, and U. Kroner (1998), Further evidence for an early Carboniferous ( 340 Ma) age of high-grade metamorphism in the Saxonian granulite complex, Geologische Rundschau: Zeitschrift für allgemeine Geologie, 86(4), 751–766, doi: 10.1007/pl00009939.

Kylander-Clark, A. R. C., B. R. Hacker, and J. M. Cottle (2013), Laser-ablation split-stream ICP petrochronology, Chemical geology, 345, 99–112, doi: 10.1016/j.chemgeo.2013.02.019.

Köhler, S., F. Duschl, H. Fazlikhani, D. Koehn, T. Stephan, and H. Stollhofen (2022), Reconstruction of cyclic Mesozoic–Cenozoic stress development in SE Germany using fault-slip and stylolite inversion, Geological magazine, 159(11-12), 1–23, doi: 10.1017/s0016756822000656.

Linnemann, U. (2007), Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development, Geological Society special publication, 286(1), 35–51, doi: 10.1144/sp286.4.

Linnemann, U., N. J. McNaughton, R. L. Romer, M. Gehmlich, K. Drost, and C. Tonk (2004), West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? ? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record, International journal of earth sciences, 93(5), 683–705, doi: 10.1007/s00531-004-0413-8.

Linnemann, U., M. Hofmann, R. L. Romer, and A. Gerdes (2010), Transitional stages between the Cadomian and Variscan orogenies: Basin development and tectono-magmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf), in Pre-Mesozoic geology of Saxo-Thuringia, edited by U. Linnemann and R. L. Romer, pp. 59–98, Schweizerbart, Stuttgart.

Linnemann, U., M. Zweig, M. Zieger-Hofmann, T. Vietor, J. Zieger, J. Haschke, A. Gärtner, K. Mende, R. Krause, and F. Knolle (2024), The Harz Mountains (Germany) – Cadomia meets Avalonia and Baltica: U–Pb ages of detrital and magmatic zircon as a key for the decoding of Pangaea’s central suture, Geological Society special publication, 542(1), 403–431, doi: 10.1144/sp542-2023-52.

Massonne, H. J. (Ed.) (1998), A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution.

Matte, P. (1986), Tectonics and plate tectonics model for the Variscan belt of Europe, Tectonophysics, 126(2-4), 329–374, doi: 10.1016/0040-1951(86)90237-4.

Mingram, B. (1998), The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units, Geological magazine, 135(6), 785–801, doi: 10.1017/s0016756898001769.

Oncken, O. (1998), Evidence for precollisional subduction erosion in ancient collisional belts: The case of the Mid-European Variscides, Geology, 26(12), 1075–1078, doi: 10.1130/0091-7613(1998)026<1075:EFPSEI>2.3.CO;2.

Ravidà, D. C. G. (2023), Novel approaches to the continental Permian-Triassic successions in southeast Germany, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Reh, H. (1954), Die Mineralquellen des Bades Liebenstein in Thüringen, Geologie mediterraneenne, 3(6), 7.

Reinhardt, J., and U. Kleemann (1994), Extensional unroofing of granulitic lower crust and related low-pressure, high-temperature metamorphism in the Saxonian Granulite Massif, Germany, Tectonophysics, 238(1-4), 71–94, doi: 10.1016/0040-1951(94)90050-7.

Richter, G. (1941), Paläogeographische und tektonische Stellung des Richelsdorfer Gebirges im hessischen Raum, Jb. Reichsst. Bodenforsch, 61, 283–332.

Ritter, O., V. Haak, V. Rath, E. Stein, and M. Stiller (1999), Very high electrical conductivity beneath the Münchberg Gneiss area in Southern Germany: implications for horizontal transport along shear planes, Geophysical journal international, 139(1), 161–170, doi: 10.1046/j.1365-246X.1999.00937.x.

Robardet, M. (2002), Alternative approach to the Variscan Belt in southwestern Europe: Preorogenic paleobiogeographical constraints, in Variscan-Appalachian dynamics: The building of the late Paleozoic basement, vol. 364, edited by J. R. M. Catalán, Hatcher, Robert D., Jr., R. Arenas, and F. D. García, pp. 1–15, Geological Society of America, doi: 10.1130/0-8137-2364-7.1.

Romer, R. L., and U. Kroner (2022), Provenance control on the distribution of endogenic Sn-W, Au, and U mineralization within the Gondwana-Laurussia plate boundary zone, in New Developments in the Appalachian-Caledonian-Variscan Orogen, vol. 554, edited by Y. D. Kuiper, J. B. Murphy, R. D. Nance, R. A. Strachan, and M. D. Thompson, pp. 25–46, Geological Society of America, doi: 10.1130/2021.2554(02).

Romer, R. L., U. Kroner, C. Schmidt, and C. Legler (2022), Mobilization of tin during continental subduction-accretion processes, Geology, 50(12), 1361–1365, doi: 10.1130/g50466.1.

Rötzler, J., and R. L. Romer (2001), P–T–t evolution of ultrahigh-temperature granulites from the Saxon granulite massif, Germany. Part I: Petrology, Journal of petrology, 42(11), 1995–2013, doi: 10.1093/petrology/42.11.1995.

Rötzler, K., and B. Plessen (2010), The Erzgebirge: a pile of ultrahigh-to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement, Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active margin to the Variscan orogen, pp. 253–270.

Scherer, E. E., K. Mezger, and C. Münker (2002), Lu-Hf ages of high-pressure metamorphism in the Variscan fold belt of southern Germany, Geochimica et Cosmochimica Acta, 66(Supplement 1), A677. Schmädicke, E., M. Okrusch, and W. Schmidt (1992), Eclogite-facies rocks in the Saxonian Erzgebirge, Germany: high pressure metamorphism under contrasting P-T conditions, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 110(2-3), 226–241, doi: 10.1007/bf00310740.

Schulmann, K., J.-B. Edel, J. R. Martínez Catalán, S. Mazur, A. Guy, J.-M. Lardeaux, P. Ayarza, and I. Palomeras (2022), Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data, Earth-science reviews, 234(104195), 104,195, doi: 10.1016/j.earscirev.2022.104195.

Schulz, B., and J. Krause (2024), Electron probe petrochronology of monazite- and garnet-bearing metamorphic rocks in the Saxothuringian allochthonous domains (Erzgebirge, Granulite and Münchberg massifs), Geological Society special publication, 537 (1), 249–284, doi: 10.1144/sp537-2022-195.

Schust, F., W. Busch, and W. Gotte (2000), Uber die Metamorphite der Brg. Schleusingen 3/63 (Sudthuringen) und ihre geologische Position, Zeitschrift für geologische Wissenschaften, 28(3/4), 381–396.

Schäfer, F., O. Oncken, H. Kemnitz, and R. L. Romer (2000), Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone), Geological Society special publication, 179(1), 281–302, doi: 10.1144/gsl.sp.2000.179.01.17.

Skiba, P., G. Gabriel, D. Vogel, C. Krawczyk, and C. Vinnemann (2010), Bouguer anomaly map of Germany.

Stamm, R., and F. Goerlich (1988), Das Grundgebirge der Süddeutschen Grossscholle, Zentralblatt für Geologie und Paläontologie, Teil 1: Allgemeine, Angewandte, Regionale und Historische Geologie, 1987 (11-12), 1403–1439.

Stephan, T., U. Kroner, T. Hahn, P. Hallas, and T. Heuse (2016), Fold/cleavage relationships as indicator for late Variscan sinistral transpression at the Rheno-Hercynian–Saxo-Thuringian boundary zone, Central European Variscides, Tectonophysics, 681, 250–262, doi: 10.1016/j.tecto.2016.03.005.

Stephan, T., U. Kroner, R. L. Romer, and D. Rösel (2019), From a bipartite Gondwanan shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana, Earth-science reviews, 192, 491–512, doi: 10.1016/j.earscirev.2019.03.012.

Stettner, G., and M. Salger (1985), Das Schiefergebirge in der Forschungsbohrung Obernsees, Geologica Bavarica, 88, 49–55.

Talwani, M. (1973), Computer usage in the computation of gravity anomalies, in Methods in Computational Physics: Advances in Research and Applications, vol. 13, edited by B. A. Bolt, pp. 343–389, Elsevier, doi: 10.1016/b978-0-12-460813-9.50014-x.

Thieme, M., F. Jähne-Klingberg, B. Fügenschuh, U. Linnemann, A. Malz, and K. Ustaszewski (2023), The Late Mesozoic to Palaeogene cooling history of the Thuringian Forest basement high and its southern periphery (Central Germany) revealed by combined fission-track and U-Pb LA-ICP-MS dating, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 174(3), 593–612, doi: 10.1127/zdgg/2023/0321.

Tichomirowa, M., S. Sergeev, H.-J. Berger, and D. Leonhardt (2012), Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany), Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 164(3), 375–396, doi: 10.1007/s00410-012-0742-8.

Trusheim, F. (1964), Über den Untergrund Frankens; Ergebnisse von Tief Bohrungen in Franken und Nachbargebieten, Geologica Bavarica, 54, 1–106.

von Gaertner, H. R. (1951), Probleme des Saxothuringicums, Geologische Rundschau: Zeitschrift für allgemeine Geologie, pp. 409–450.

Wiest, J. D., S. Köhler, D. Koehn, H. Stollhofen, K. Dengler, and H. Fazlikhani (2025), A novel multi-scale approach to fault network analysis and visualization: test case Franconian Platform (SE Germany), Journal of structural geology, 199(105481), 105,481, doi: 10.1016/j.jsg.2025.105481.

Will, T. M. (2001), Paleostress-tensor analysis of late deformation events in the Odenwald Crystalline Complex and comparison with other units of the Mid-German Crystalline Rise, Germany, Mineralogy and petrology, 72(1-3), 229–247, doi: 10.1007/s007100170035.

Will, T. M., E. Schmädicke, X.-X. Ling, X.-H. Li, and Q.-L. Li (2021), Geochronology, geochemistry and tectonic implications of Variscan granitic and dioritic rocks from the Odenwald-Spessart basement, Germany, Lithos, 404-405(106454), 106,454, doi: 10.1016/j.lithos.2021.106454.

Willner, A. P., A. Krohe, and W. V. Maresch (2000), Interrelated PTtd paths in the Variscan Erzgebirge dome (Saxony, Germany): Constraints on the rapid exhumation of high-pressure rocks from the root zone of a collisional orogen, International geology review, 42(1), 64–85.

Wunderlich, J. (1989), New results on the geology of the southeastern Ruhla Crystalline Complex, Freiberger Forschungshefte, Reihe C, 429, 7–32.

Wurm, A. (1926), Über den Bauplan des variskischen Gebirges am Westrand der Böhmischen Masse, Geologische Rundschau, 17 (4), 241–257, doi: 10.1007/bf01801780.

Wurm, A. (1929), Die Nürnberger Tiefbohrungen: ihre wissenschaftliche und praktische Bedeutung, Bayerisches Oberbergamt. Wurm, A. (1961), Frankenwald, Münchberger Gneismasse, Fichtelgebirge, Nördlicher Oberpfälzer Wald, Geologie von Bayern, 2 ed., Borntraeger, Stuttgart, Germany.

Zeh, A., and T. M. Will (2010), The mid-German crystalline zone, Pre-Mesozoic Geology of Saxo-Thuringia—From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp. 195–220.

Ziegenhardt, W., and J. Jungwirth (1972), Erläuterungen zur Geologischen Spezialkarte der DDR 1:25 000, Bl. Plaue 5231. - 269 S.