Timanian Fold-and-Thrust Belt and Caledonian Overprint in the Selis Ridge Imaged by New 3D Seismic Attributes and Spectral Decomposition
Main Article Content
Abstract
The present study is a detailed structural analysis of 3D seismic data in the Selis Ridge in the western Loppa High in the Norwegian Barents Sea, to which new seismic attributes and spectral decomposition were applied. The analysis reveals that pre-Devonian basement rocks are crosscut by a 40–50 kilometers wide, several kilometers thick, E–W- to WNW–ESE-striking fold-and-thrust belt, including a steep, kilometer-thick, top-SSW shear zone. The folds display dome- and trough-shaped geometries, the thrusts appear to have been reactivated dominantly as top-west structures, and the main shear zone warps over the top of the Selis Ridge. The fold-and-thrust belt is interpreted as part of the latest Neoproterozoic (ca. 650–550 Ma) Timanian Orogeny, which potentially reworked preexisting Neoproterozoic rift basins and highs, and was reworked during E–W Caledonian contraction in the Ordovician–Silurian. The results are analogous to recent findings in the northern Norwegian Barents Sea and Svalbard. The presented interpretation provides the basis for discussing Neoproterozoic–Paleozoic plate tectonics reconstructions, the influence of Precambrian–early Paleozoic structures on post-Caledonian fault complexes, the location of the Timanian and Caledonian suture zones, Neoproterozoic rifting, and the origin of the Seiland Igneous Province.
Article Details
References
Aakvik, R. (1981), Fasies analyse av undre karbonske kullførende sedimenter, billefjorden, spitsbergen, Ph.D. thesis, University of Bergen, Bergen, Norway.
Ahlborn, M., and L. Stemmerik (2015), Depositional evolution of the upper carboniferous – lower permian wordiekammen carbonate platform, nordfjorden high, central spitsbergen, arctic norway, Norwegian Journal of Geology, doi: 10.17850/njg95-1-03.
Anell, I., A. Braathen, S. Olaussen, and P. T. Osmundsen (2013), Evidence of faulting contradicts a quiescent northern barents shelf during the triassic, First Break, 31(6), doi: 10.3997/1365-2397.2013017.
Anell, I., J.-I. Faleide, and A. Braathen (2016), Regional tectono-sedimentary development of the highs and basins of the northwestern barents shelf, Norwegian Journal of Geology, doi: 10.17850/njg96-1-04.
Arbaret, L., and J.-P. Burg (2003), Complex flow in lowest crustal, anastomosing mylonites: Strain gradients in a kohistan gabbro, northern pakistan, Journal of geophysical research, 108(B10), doi: 10.1029/2002jb002295.
Beckholmen, M., and J. Glodny (2004), Timanian blueschist-facies metamorphism in the kvarkush metamorphic basement, northern urals, russia, Geological Society, London, Memoirs, 30(1), 125–134, doi: 10.1144/GSL.MEM.2004.030.01.11.
Bell, T. H., and M. A. Etheridge (1973), Microstructure of mylonites and their descriptive terminology, Lithos, 6(4), 337–348, doi: 10.1016/0024-4937(73)90052-2.
Bergh, S. G., and P. Grogan (2003), Tertiary structure of the Sørkapp-Hornsund region, south spitsbergen, and implications for the offshore southern extension of the fold-thrust belt, Norwegian Journal of Geology/Norsk Geologisk Forening, 83(1).
Birkenmajer, K. (1975), Caledonides of svalbard and plate tectonics, Bulletin of the Geological Society of Denmark, 24(1-2), 1–19.
Birkenmajer, K. (1991), The jarlsbergian unconformity (Proterozoic/Cambrian boundary) and the problem of varangian tillites in south spitsbergen, Polish Polar Research.
Birkenmajer, K. (2004), Caledonian basement in NW wedel jarlsberg land south of bellsund, spitsbergen, Polish Polar Research.
Bjørnerud, M. (1990), An upper proterozoic unconformity in northern wedel jarlsberg land, southwest spitsbergen: lithostratigraphy and tectonic implications, Polar research, 8(2), 127–139, doi: 10.3402/polar.v8i2.6809.
Bjørnerud, M., P. L. Decker, and C. Craddock (1991), Reconsidering caledonian deformation in southwest spitsbergen,
Tectonics, 10(1), 171–190, doi: 10.1029/90tc02396.
Boyer, S. E., and D. Elliott (1982), Thrust systems, AAPG bulletin, 66, doi: 10.1306/03b5a77d-16d1-11d7-8645000102c1865d.
Braathen, A., H. D. Maher, T. E. Haabet, S. E. Kristensen, B. O. Tørudbakken, and D. Worsley (1999), Caledonian thrusting on bj rn ya: Implications for palaeozoic and mesozoic tectonism of the western barents shelf, Norsk Geologisk Tidsskrift, 79(1), 57–68, doi: 10.1080/002919699433915.
Braathen, A., K. Bælum, H. Maher, Jr, and S. J. Buckley (2011), Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the carboniferous billefjorden trough, svalbard, Norwegian Journal of Geology, 91(3), 137–160.
Braathen, A., P. T. Osmundsen, H. Maher, and M. Ganerød (2018), The keisarhjelmen detachment records Silurian-Devonian extensional collapse in northern svalbard, Terra nova, 30(1), 34–39, doi: 10.1111/ter.12305.
Breivik, A. J., R. Mjelde, P. Grogan, H. Shimamura, Y. Murai, and Y. Nishimura (2005), Caledonide development offshore– onshore svalbard based on ocean bottom seismometer, conventional seismic, and potential field data, Tectonophysics, 401(1), 79–117, doi: 10.1016/j.tecto.2005.03.009.
Chalmers, J. A., and T. C. R. Pulvertaft (2001), Development of the continental margins of the labrador sea: a review, Geological Society, London, Special Publications, 187(1), 77–105, doi: 10.1144/GSL.SP.2001.187.01.05.
Chauvet, A., and M. Séranne (1994), Extension-parallel folding in the scandinavian caledonides: Implications for late-orogenic processes, Tectonophysics, 238(1), 31–54, doi: 10.1016/0040-1951(94)90048-5.
Christensen, N. I. (1965), Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars, Journal of geophysical research, 70(24), 6147–6164, doi: 10.1029/jz070i024p06147.
Christensen, N. I. (1966), Shear wave velocities in metamorphic rocks at pressures to 10 kilobars, Journal of geophysical research, 71(14), 3549–3556, doi: 10.1029/jz071i014p03549.
Christensen, N. I., and D. L. Szymanski (1988), Origin of reflections from the brevard fault zone, Journal of geophysical research, 93(B2), 1087, doi: 10.1029/jb093ib02p01087.
Clerc, C., J.-C. Ringenbach, L. Jolivet, and J.-F. Ballard (2018), Rifted margins: Ductile deformation, boudinage, continentward- dipping normal faults and the role of the weak lower crust, Gondwana Research, 53, 20–40, doi: 10.1016/j.gr.2017.04.030.
Corfu, F., R. J. Roberts, T. H. Torsvik, L. D. Ashwal, and D. M. Ramsay (2007), Peri-Gondwanan elements in the caledonian nappes of finnmark, northern norway: Implications for the paleogeographic framework of the scandinavian caledonides, American journal of science, 307(2), 434–458, doi: 10.2475/02.2007.05.
Cutbill, J. L., and A. Challinor (1965), Revision of the stratigraphical scheme for the carboniferous and permian rocks of spitsbergen and bjørnøya, Geological magazine, 102(5), 418–439, doi: 10.1017/S0016756800053693.
Cutbill, J. L., W. G. Henderson, and N. J. R. Wright (1976), The billefjorden group (early carboniferous) of central spitsbergen,
Norsk Polarinstitutt Skrifter, 164, 57–89.
Dallmann, W. K., A. Andresen, S. G. Bergh, H. D. Maher, Jr, and Y. Ohta (1993), Tertiary fold-and-thrust belt of spitsbergen, svalbard, Norsk Polarinstitutt Meddelelser.
Dallmeyer, R. D., J. J. Peucat, T. Hirajima, and Y. Ohta (1990), Tectonothermal chronology within a blueschist-eclogite complex, west-central spitsbergen, svalbard: Evidence from 40Ar39Ar and RbSr mineral ages, Lithos, 24(4), 291–304, doi: 10.1016/0024-4937(89)90049-2.
Dovzhikova, E., V. Pease, and D. Remizov (2004), Neoproterozoic island are magmatism beneath the pechora basin, NW russia, GFF, 126(4), 353–362, doi: 10.1080/11035890401264353.
Dumais, M.-A., L. Gernigon, O. Olesen, S. E. Johansen, and M. Brönner (2020), New interpretation of the spreading evolution of the knipovich ridge derived from aeromagnetic data, Geophysical Journal International, 224(2), 1422–1428, doi: 10.1093/gji/ggaa527.
Eberts, A., H. Fazlikhani, W. Bauer, H. Stollhofen, H. de Wall, and G. Gabriel (2021), Late to post-variscan basement segmentation and differential exhumation along the SW bohemian massif, central europe, Solid earth, 12(10), 2277–2301, doi: 10.5194/se-12-2277-2021.
Estrada, S., F. Tessensohn, and B.-L. Sonntag (2018a), A timanian island-arc fragment in north greenland: The midtkap igneous suite, Journal of Geodynamics, 118, 140–153, doi: 10.1016/j.jog.2018.01.015.
Estrada, S., K. Mende, A. Gerdes, A. Gärtner, M. Hofmann, C. Spiegel, D. Damaske, and N. Koglin (2018b), Proterozoic to cretaceous evolution of the western and central pearya terrane (canadian high arctic), Journal of Geodynamics, 120, 45–76, doi: 10.1016/j.jog.2018.05.010.
Faehnrich, K., J. Majka, D. Schneider, S. Mazur, M. Manecki, G. Ziemniak, V. T. Wala, and J. V. Strauss (2020), Geochronological constraints on caledonian strike–slip displacement in svalbard, with implications for the evolution of the arctic, Terra nova, 32(4), 290–299, doi: 10.1111/ter.12461.
Faleide, J. I., S. T. Gudlaugsson, and G. Jacquart (1984), Evolution of the western barents sea, Marine and Petroleum Geology, 1(2), 123–150, doi: 10.1016/0264-8172(84)90082-5.
Faleide, J. I., E. Vågnes, and S. T. Gudlaugsson (1993), Late Mesozoic-Cenozoic evolution of the south-western barents sea in a regional rift-shear tectonic setting, Marine and Petroleum Geology, 10(3), 186–214, doi: 10.1016/0264-8172(93)90104-Z.
Faleide, J. I., F. Tsikalas, A. J. Breivik, R. Mjelde, O. Ritzmann, Ø. Engen, J. Wilson, and O. Eldholm (2008), Structure and evolution of the continental margin off norway and the barents sea, Episodes, 31(1), 82–91, doi: 10.18814/epiiugs/2008/v31i1/012.
Fazli Khani, H., H. Fossen, R. L. Gawthorpe, J. L. Faleide, and R. E. Bell (2017), Basement structure and its influence on the structural configuration of the northern north sea, Tectonics, doi: 10.1002/2017TC004514.
Fichler, C., and Z. Pastore (2022), Petrology of the crystalline crust in the southwestern barents sea inferred from geophysical data, Norwegian Journal of Geology, doi: 10.17850/njg102-2-2.
Fisher, M. A., T. M. Brocher, W. J. Nokleberg, G. Plafker, and G. L. Smith (1989), Seismic reflection images of the crust of the northern part of the chugach terrane, alaska: Results of a survey for the Trans-Alaska crustal transect (TACT), Journal of geophysical research, 94(B4), 4424–4440, doi: 10.1029/jb094ib04p04424.
Flood, B., D. G. Gee, A. Hjelle, T. Siggerud, and T. S. Winsnes (1969), The geology of nordaustlandet, northern and central parts, Tech. rep., Norsk Polarinstitutt Skrifter.
Fountain, D. M., C. A. Hurich, and S. B. Smithson (1984), Seismic reflectivity of mylonite zones in the crust, Geology, 12(4), 195–198, doi: 10.1130/0091-7613(1984)12<195:SROMZI>2.0.CO;2.
Friend, P. F., W. B. Harland, D. A. Rogers, I. Snape, and R. S. W. Thornley (1997), Late silurian and early devonian stratigraphy and probable strike-slip tectonics in northwestern spitsbergen, Geological magazine, 134(4), 459–479, doi: 10.1017/S0016756897007231.
Gabrielsen, R. H. (1984), Long-lived fault zones and their influence on the tectonic development of the southwestern barents sea, Journal of the Geological Society, 141(4), 651–662, doi: 10.1144/gsjgs.141.4.0651.
Gabrielsen, R. H., R. Foerseth, G. Hamar, and H. Rønnevik (1984), Nomenclature of the main structural features on the norwegian continental shelf north of the 62nd parallel, in Petroleum Geology of the North European Margin, pp. 41–60, Springer Netherlands, doi: 10.1007/978-94-009-5626-1_5.
Gabrielsen, R. H., R. B. Faerseth, and L. N. Jensen (1990), Structural elements of the norwegian continental shelf. pt. 1. the barents sea region, Tech. Rep. 6, Norwegian Petroleum Directorate.
Gabrielsen, R. H., I. Grunnaleite, and E. Rasmussen (1997), Cretaceous and tertiary inversion in the bjørnøyrenna fault complex, south-western barents sea, Marine and Petroleum Geology, 14(2), 165–178, doi: 10.1016/S0264-8172(96)00064-5.
Gabrielsen, R. H., J. I. Faleide, K. A. Leever, and I. Grunnaleite (2011), Strike-slip related inversion-tectonics of the southwestern barents sea (norwegian shelf) in a plate tectonic perspective, in Geophys. Res. Abstr., vol. 13.
Gabrielsen, R. H., D. Roberts, T. Gjelsvik, T. O. Sygnabere, M. Hassaan, and J. I. Faleide (2022), Double-folding and thrust-front geometries associated with the timanian and caledonian orogenies in the varanger peninsula, finnmark, north norway, Journal of the Geological Society, 179(6), jgs2021–153, doi: 10.1144/jgs2021-153.
Gayer, R. A., S. J. Hayes, and A. H. N. Andrice (1985), The structural development of the kalak nappe complex of eastern and central porsangerhalvoya, finnmark, norway, Tech. Rep. 400, Norges geologiske undersøkelse bulletin.
Gayer, R. A., A. H. N. Rice, D. Roberts, C. Townsend, and A. Welbon (1987), Restoration of the caledonian baltoscandian margin from balanced cross-sections: the problem of excess continental crust, Earth and environmental science transactions of the Royal Society of Edinburgh, 78(3), 197–217, doi: 10.1017/S026359330001110X.
Gee, D. G., and L. M. Page (1994), Caledonian terrane assembly on svalbard; new evidence from 40 ar/ 39 ar dating in ny friesland, American journal of science, 294(9), 1166–1186, doi: 10.2475/ajs.294.9.1166.
Gee, D. G., L. Björklund, and L.-K. Stølen (1994), Early proterozoic basement in ny friesland—implications for the caledonian tectonics of svalbard, Tectonophysics, 231(1), 171–182, doi: 10.1016/0040-1951(94)90128-7.
Gee, D. G., L. Beliakova, V. Pease, A. Larionov, and L. Dovshikova (2000), New, single zircon (pb-evaporation) ages from vendian intrusions in the basement beneath the pechora basin, northeastern baltica, Polarforschung, 68, 161–170.
Gernigon, L., and M. Brönner (2012), Late Palaeozoic architecture and evolution of the southwestern Barents Sea: insights from a new generation of aeromagnetic data, Journal of the Geological Society, 169(4), 449–459, doi: 10.1144/0016- 76492011-131.
Gernigon, L., M. Brönner, D. Roberts, O. Olesen, A. Nasuti, and T. Yamasaki (2014), Crustal and basin evolution of the southwestern barents sea: From caledonian orogeny to continental breakup, Tectonics, 33(4), 347–373, doi: 10.1002/2013tc003439.
Gernigon, L., M. Brönner, M.-A. Dumais, S. Gradmann, A. Grønlie, A. Nasuti, and D. Roberts (2018), Basement inheritance and salt structures in the SE barents sea: Insights from new potential field data, Journal of Geodynamics, 119, 82–106, doi: 10.1016/j.jog.2018.03.008.
Gjelberg, J. (1984), Early-middle carboniferous sedimentation on svalbard. a study of ancient alluvial and coastal marine sedimentation in rift and strike-slip basins, Ph.D. thesis, University of Bergen, Bergen, Norway.
Griffin, W. L., N. Nikolic, S. Y. O’Reilly, and N. J. Pearson (2012), Coupling, decoupling and metasomatism: Evolution of crust– mantle relationships beneath NW spitsbergen, Lithos, 149, 115–135, doi: 10.1016/j.lithos.2012.03.003.
Gudlaugsson, S. T., J. I. Faleide, S. Fanavoll, and B. Johansen (1987), Deep seismic reflection profiles across the western barents sea, Geophysical Journal International, 89(1), 273–278, doi: 10.1111/j.1365-246X.1987.tb04419.x.
Gudlaugsson, S. T., J. I. Faleide, S. E. Johansen, and A. J. Breivik (1998), Late palaeozoic structural development of the south- western barents sea, Marine and Petroleum Geology, 15(1), 73–102, doi: 10.1016/S0264-8172(97)00048-2.
Hajnal, Z., S. Lucas, D. White, J. Lewry, S. Bezdan, M. R. Stauffer, and M. D. Thomas (1996), Seismic reflection images of high-angle faults and linked detachments in the Trans-Hudson orogen, Tectonics, 15(2), 427–439, doi: 10.1029/95tc02710.
Harland, W. B. (1978), The caledonides of svalbard, in Caledonian – Appalachian Orogen of the North Atlantic Region, edited by
W. B. Harland, pp. 3–12, The Geological Association of Canada.
Harland, W. B., R. A. Scott, K. A. Auckland, and I. Snape (1992), The ny friesland orogen, spitsbergen, Geological magazine, 129(6), 679–707, doi: 10.1017/S0016756800008438.
Hedin, P., B. Almqvist, T. Berthet, C. Juhlin, S. Buske, H. Simon, R. Giese, F. Krauß, J.-E. Rosberg, and P.-G. Alm (2016), 3D reflection seismic imaging at the 2.5km deep COSC-1 scientific borehole, central scandinavian caledonides, Tectonophysics, 689, 40–55, doi: 10.1016/j.tecto.2015.12.013.
Herrevold, T., R. H. Gabrielsen, and D. Roberts (2009), Structural geology of the southeastern part of the Trollfjorden- Komagelva fault zone, varanger peninsula, finnmark, north norway, Norwegian Journal of Geology/Norsk Geologisk Forening, 89(4).
Horsfield, W. T. (1972), Glaucophane schists of caledonian age from spitsbergen, Geological magazine, 109(1), 29–36, doi: 10.1017/S0016756800042242.
Hossack, J. R. (1984), The geometry of listric growth faults in the devonian basins of sunnfjord, W norway, Journal of the Geological Society, 141(4), 629–637, doi: 10.1144/gsjgs.141.4.0629.
Hurich, C. A., S. B. Smithson, D. M. Fountain, and M. C. Humphreys (1985), Seismic evidence of mylonite reflectivity and deep structure in the kettle dome metamorphic core complex, washington, Geology, 13(8), 577–580, doi: 10.1130/0091- 7613(1985)13<577:SEOMRA>2.0.CO;2.
Indrevær, K., S. G. Bergh, J.-B. Koehl, J.-A. Hansen, E. R. Schermer, and A. Ingebrigtsen (2013), Post-Caledonian brittle fault zones on the hyperextended SW barents sea margin: New insights into onshore and offshore margin architecture, Norwegian Journal of Geology, 93(3-4).
Indrevær, K., R. H. Gabrielsen, and J. I. Faleide (2017), Early cretaceous synrift uplift and tectonic inversion in the loppa high area, southwestern barents sea, norwegian shelf, Journal of the Geological Society, 174(2), 242–254, doi: 10.1144/jgs2016- 066.
Indrevær, K., S. Gac, R. H. Gabrielsen, and J. I. Faleide (2018), Crustal-scale subsidence and uplift caused by metamorphic phase changes in the lower crust: a model for the evolution of the loppa high area, SW barents sea from late paleozoic to present, Journal of the Geological Society, 175(3), 497–508, doi: 10.1144/jgs2017-063.
Jakobsson, M., L. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen,
M. Rebesco, H. W. Schenke, Y. Zarayskaya, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi,
I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher,
S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall (2012), The international bathymetric chart of the arctic ocean (IBCAO) version 3.0, Geophysical research letters, 39(12), doi: 10.1029/2012gl052219.
Ji, S., and C. Long (2006), Seismic reflection response of folded structures and implications for the interpretation of deep seismic reflection profiles, Journal of Structural Geology, 28(8), 1380–1387, doi: 10.1016/j.jsg.2006.05.003.
Johansen, S. E., T. Henningsen, E. Rundhovde, B. M. Sæther, C. Fichler, and H. G. Rueslåtten (1994), Continuation of the caledonides north of norway: seismic reflectors within the basement beneath the southern barents sea, Marine and Petroleum Geology, 11(2), 190–201, doi: 10.1016/0264-8172(94)90095-7.
Johansson, Å., A. N. Larionov, D. G. Gee, Y. Ohta, A. M. Tebenkov, and S. Sandelin (2004), Grenvillian and caledonian tectono-magmatic activity in northeasternmost svalbard, Geological Society, London, Memoirs, 30(1), 207–232, doi: 10.1144/GSL.MEM.2004.030.01.17.
Johansson, A., D. G. Gee, A. N. Larionov, Y. Ohta, and A. M. Tebenkov (2005), Grenvillian and caledonian evolution of eastern svalbard - a tale of two orogenies, Terra nova, 17(4), 317–325, doi: 10.1111/j.1365-3121.2005.00616.x.
Kairanov, B., A. Escalona, I. Norton, and P. Abrahamson (2021), Early cretaceous evolution of the tromsø basin, SW barents sea, norway, Marine and Petroleum Geology, 123, 104,714, doi: 10.1016/j.marpetgeo.2020.104714.
Kirkland, C. L., J. S. Daly, E. A. Eide, and M. J. Whitehouse (2007a), Tectonic evolution of the arctic norwegian caledonides from a texturally- and structurally-constrained multi-isotopic (Ar-Ar, Rb-Sr, Sm-Nd, U-Pb) study, American journal of science, 307(2), 459–526, doi: 10.2475/02.2007.06.
Kirkland, C. L., J. Stephen Daly, and M. J. Whitehouse (2007b), Provenance and terrane evolution of the kalak nappe complex, norwegian caledonides: Implications for neoproterozoic paleogeography and tectonics, The Journal of geology, 115(1), 21–41, doi: 10.1086/509247.
Kirkland, C. L., J. S. Daly, and M. J. Whitehouse (2008), Basement–cover relationships of the kalak nappe complex, arctic norwegian caledonides and constraints on neoproterozoic terrane assembly in the north atlantic region, Precambrian research, 160(3), 245–276, doi: 10.1016/j.precamres.2007.07.006.
Kleinspehn, K. L., and C. Teyssier (1992), Tectonics of the palaeogene forlandsundet basin, spitsbergen: a preliminary report,
Norsk Geologisk Tidsskrift, 72(1), 93–104.
Kleinspehn, K. L., and C. Teyssier (2016), Oblique rifting and the late Eocene–Oligocene demise of laurasia with inception of molloy ridge: Deformation of forlandsundet basin, svalbard, Tectonophysics, 693, 363–377, doi: 10.1016/j.tecto.2016.05.010.
Klitzke, P., D. Franke, A. Ehrhardt, R. Lutz, L. Reinhardt, I. Heyde, and J. I. Faleide (2019), The paleozoic evolution of the olga basin region, northern barents sea: A link to the timanian orogeny, Geochemistry, Geophysics, Geosystems, 20(2), 614–629, doi: 10.1029/2018gc007814.
Knudsen, C., D. G. Gee, S. C. Sherlock, and L. Yu (2019), Caledonian metamorphism of metasediments from franz josef land,
GFF, 141(4), 295–307, doi: 10.1080/11035897.2019.1622151.
Knutsen, S.-M., and K. I. Larsen (1997), The late mesozoic and cenozoic evolution of the sørvestsnaget basin: A tectonostratigraphic mirror for regional events along the southwestern barents sea margin?, Marine and Petroleum Geology, 14(1), 27–54, doi: 10.1016/S0264-8172(96)00039-6.
Knutsen, S.-M., L.-J. Skjold, and P. H. Skott (1992), Palaeocene and eocene development of the tromsø basin sedimentary response to rifting and early sea-floor spreading in the barents sea area, Norsk Geologisk Tidsskrift, 72, 191–207.
Koehl, J.-B. (2020), Impact of timanian thrusts on the phanerozoic tectonic history of svalbard, in EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2170, pp. EGU2020–2170, Copernicus Meetings, doi: 10.5194/egusphere-egu2020-2170.
Koehl, J.-B., and L. Allaart (2021), The billefjorden fault zone north of spitsbergen: a major terrane boundary?, Polar research, 40, doi: 10.33265/polar.v40.7668.
Koehl, J.-B. P. (2022), Implications of timanian thrust systems in the barents sea and svalbard on the use of paleontological constraints for plate tectonics reconstructions, doi: 10.13140/RG.2.2.15321.39525.
Koehl, J.-B. P., S. G. Bergh, T. Henningsen, and J. I. Faleide (2018), Middle to late Devonian–Carboniferous collapse basins on the finnmark platform and in the southwesternmost nordkapp basin, SW barents sea, Solid earth, 9(2), 341–372, doi: 10.5194/se-9-341-2018.
Koehl, J.-B. P., C. Magee, and I. M. Anell (2022a), Impact of timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the barents sea and svalbard, Solid earth, 13(1), 85–115, doi: 10.5194/se-13-85-2022.
Koehl, J.-B. P., J. E. A. Marshall, and G. Lopes (2022b), The timing of the svalbardian orogeny in svalbard: a review, Solid Earth, 13(8), 1353–1370, doi: 10.5194/se-13-1353-2022.
Koglin, N., A. Läufer, K. Piepjohn, A. Gerdes, D. W. Davis, U. Linnemann, and S. Estrada (2022), Paleozoic sedimentation and caledonian terrane architecture in NW svalbard: indications from U–Pb geochronology and structural analysis, Journal of the Geological Society, 179(4), jgs2021–053, doi: 10.1144/jgs2021-053.
Korago, E. A., G. N. Kovaleva, B. G. Lopatin, and V. V. Orgo (2004), The precambrian rocks of novaya zemlya, Geological Society, London, Memoirs, 30(1), 135–143, doi: 10.1144/GSL.MEM.2004.030.01.12.
Kośmińska, K., J. Majka, S. Mazur, M. Krumbholz, I. Klonowska, M. Manecki, J. Czerny, and M. Dwornik (2014), Blueschist facies metamorphism in nordenskiöld land of west-central svalbard, Terra nova, 26(5), 377–386, doi: 10.1111/ter.12110.
Kostyuchenko, S., R. Sapozhnikov, A. Egorkin, D. G. Gee, R. Berzin, and L. Solodilov (2006), Crustal structure and tectonic model of northeastern baltica, based on deep seismic and potential field data, Geological Society, London, Memoirs, 32(1), 521–539, doi: 10.1144/GSL.MEM.2006.032.01.32.
Kristensen, T. B., A. Rotevatn, M. Marvik, G. A. Henstra, R. L. Gawthorpe, and R. Ravnås (2018), Structural evolution of sheared margin basins: the role of strain partitioning. sørvestsnaget basin, norwegian barents sea, Basin Research, 30(2), 279–301, doi: 10.1111/bre.12253.
Kurapov, M., V. Ershova, A. Khudoley, A. Makariev, and E. Makarieva (2020), The first evidence of late ordovician magmatism of the october revolution island (severnaya zemlya archipelago, russian high arctic): geochronology, geochemistry and geodynamic settings, Norwegian Journal of Geology/Norsk Geologisk Forening, 100(1).
Kuznetsov, N. B., A. A. Soboleva, O. V. Udoratina, M. V. Hertseva, and V. L. Andreichev (2007), Pre-Ordovician tectonic evolution and volcano–plutonic associations of the timanides and northern Pre-Uralides, northeast part of the east european craton, Gondwana Research, 12(3), 305–323, doi: 10.1016/j.gr.2006.10.021.
Larionov, A. N., V. A. Andreichev, and D. G. Gee (2004), The vendian alkaline igneous suite of northern timan: ion microprobe U-Pb zircon ages of gabbros and syenite, Geological Society, London, Memoirs, 30(1), 69–74, doi: 10.1144/GSL.MEM.2004.030.01.07.
Larssen, G. B. (2005), Upper Palaeozoic Lithostratigraphy of the Southern Part of the Norwegian Barents Sea, vol. 444, Norges geologiske undersøkelse.
Lasabuda, A., J. S. Laberg, S.-M. Knutsen, and P. Safronova (2018), Cenozoic tectonostratigraphy and pre-glacial erosion: A mass-balance study of the northwestern barents sea margin, norwegian arctic, Journal of Geodynamics, 119, 149–166, doi: 10.1016/j.jog.2018.03.004.
Lenhart, A., C. A.-L. Jackson, R. E. Bell, O. B. Duffy, R. L. Gawthorpe, and H. Fossen (2019), Structural architecture and composition of crystalline basement offshore west norway, Lithosphere, 11(2), 273–293, doi: 10.1130/L668.1.
Lepvrier, C. (1990), Early tertiary paleostress history and tectonic development of the forlandsundet basin, svalbard, norway,
Tech. Rep. 112, Norsk Polarinstitutt Meddelelser.
Lopatin, B. G., L. G. Pavlov, V. V. Orgo, and S. Shkarubo (2001), Teetonic structure of novaya zemlya, Polarforschung, 69, 131–135.
Lorenz, H., A. M. Pystin, V. G. Olovyanishnikov, and D. G. Gee (2004), Neoproterozoic high-grade metamorphism of the kanin peninsula, timanide orogen, northern russia, Geological Society, London, Memoirs, 30(1), 59–68, doi: 10.1144/GSL.MEM.2004.030.01.06.
Lyberis, N., and G. Manby (1999), Continental collision and lateral escape deformation in the lower and upper crust: An example from caledonide svalbard, Tectonics, 18(1), 40–63, doi: 10.1029/1998tc900013.
Majka, J., S. Mazur, M. Manecki, J. Czerny, and D. K. Holm (2008), Late neoproterozoic amphibolite-facies metamorphism of a pre-caledonian basement block in southwest wedel jarlsberg land, spitsbergen: new evidence from U–Th–Pb dating of monazite, Geological magazine, 145(6), 822–830, doi: 10.1017/S001675680800530X.
Majka, J., A. N. Larionov, D. G. Gee, J. Czerny, and J. Pršek (2012), Neoproterozoic pegmatite from skoddefjellet, wedel jarlsberg land, spitsbergen: Additional evidence for c. 640 ma tectonothermal event in the caledonides of svalbard, Polish Polar Research, pp. 1–17.
Manby, G. M. (1986), Mid-Palaeozoic metamorphism and polyphase deformation of the forland complex, svalbard, Geological magazine, 123(6), 651–663, doi: 10.1017/S001675680002416X.
Manecki, M., D. K. Holm, J. Czerny, and D. Lux (1998), Thermochronological evidence for late proterozoic (vendian) cooling in southwest wedel jarlsberg land, spitsbergen, Geological magazine, 135(1), 63–69, doi: 10.1017/S0016756897008297.
Marín, D., S. Helleren, A. Escalona, S. Olaussen, A. Cedeño, H. Nøhr-Hansen, and S. Ohm (2021), The middle jurassic to lowermost cretaceous in the SW barents sea: Interplay between tectonics, coarse-grained sediment supply and organic matter preservation, Basin Research, 33(2), 1033–1055, doi: 10.1111/bre.12504.
Matapour, Z., D. A. Karlsen, B. Lerch, and K. Backer-Owe (2019), Petroleum occurrences in the carbonate lithologies of the gohta and alta discoveries in the barents sea, arctic norway, Petroleum Geoscience, 25(1), 50–70, doi: 10.1144/petgeo2017- 085.
Mazur, S., J. Czerny, J. Majka, M. Manecki, D. Holm, A. Smyrak, and A. Wypych (2009), A strike-slip terrane boundary in wedel jarlsberg land, svalbard, and its bearing on correlations of SW spitsbergen with the pearya terrane and timanide belt, Journal of the Geological Society, 166(3), 529–544, doi: 10.1144/0016-76492008-106.
Murascov, L. G., and J. I. Mokin (1979), Stratigraphic subdivision of the devonian deposits of spitsbergen, Norsk Polarinstitutt Skrifter, 167, 249–261.
Nordaunet-Olsen, E. M., A. Escalona, T. Skar, and L. Pedersen (2015), Controls on upper paleozoic carbonate build-up development in the SC barents sea, in 3PArctic Conference.
Norton, M. G. (1987), The Nordfjord-Sogn detachment, w. norway, Norsk Geologisk Tidsskrift, 67(2), 93–106.
Nøttvedt, A., L. T. Berglund, E. Rasmussen, and R. J. Steel (1988), Some aspects of tertiary tectonics and sedimentation along the western barents shelf, Geological Society, London, Special Publications, 39(1), 421–425, doi: 10.1144/GSL.SP.1988.039.01.37.
Oakey, G. N., and J. A. Chalmers (2012), A new model for the paleogene motion of greenland relative to north america: Plate reconstructions of the davis strait and nares strait regions between canada and greenland, Journal of Geophysical Research, [Solid Earth], 117(B10), doi: 10.1029/2011JB008942.
O’Brien, T. M., E. L. Miller, J. P. Benowitz, K. E. Meisling, and T. A. Dumitru (2016), Dredge samples from the chukchi borderland: Implications for paleogeographic reconstruction and tectonic evolution of the amerasia basin of the arctic, American journal of science, 316(9), 873–924, doi: 10.2475/09.2016.03.
Ogata, K., M. J. Mulrooney, A. Braathen, H. Maher, P. T. Osmundsen, I. Anell, A. A. Smyrak-Sikora, and F. Balsamo (2018), Architecture, deformation style and petrophysical properties of growth fault systems: the late triassic deltaic succession of southern edgeøya (east svalbard), Basin Research, 30(5), 1042–1073, doi: 10.1111/bre.12296.
Ohta, Y., R. D. Dallmeyer, and J. J. Peucat (1989), Caledonian terranes in Svalbard, in Terranes in the Circum-Atlantic Paleozoic Orogens, Geological Society of America, doi: 10.1130/SPE230-p1.
Ohta, Y., A. A. Krasil’šikov, C. Lepvrier, and A. M. Teben’kov (1995), Northern continuation of caledonian high-pressure metamorphic rocks in central-western spitsbergen, Polar research, 14(3), 303–316, doi: 10.3402/polar.v14i3.6670.
Olovyanishnikov, V. G., D. Roberts, and A. Siedleekat (2000), Teetonics and sedimentation of the meso- to neoproterozoic Timan-Varanger belt along the northeastern margin of baltica, Polarforschung, 68, 267–274.
Omosanya, K. O., I. Zervas, N. H. Mattos, T. M. Alves, S. E. Johansen, and G. Marfo (2017), Strike-Slip tectonics in the SW barents sea during north atlantic rifting (swaen graben, northern norway), Tectonics, 36(11), 2422–2446, doi: 10.1002/2017tc004635.
Osagiede, E. E., A. Rotevatn, R. Gawthorpe, T. B. Kristensen, C. A.-L. Jackson, and N. Marsh (2020), Pre-existing intra-basement shear zones influence growth and geometry of non-colinear normal faults, western utsira High–Heimdal terrace, north sea, Journal of Structural Geology, 130, 103,908, doi: 10.1016/j.jsg.2019.103908.
Osmundsen, P. T., A. Braathen, R. S. Rød, and I. B. Hynne (2014), Styles of normal faulting and fault-controlled sedimentation in the triassic deposits of eastern svalbard, Norwegian Petroleum directorate Bulletin, 10, 61–79.
Pease, V., E. Dovzhikova, L. Beliakova, and D. G. Gee (2004), Late neoproterozoic granitoid magmatism in the basement to the pechora basin, NW russia: geochemical constraints indicate westward subduction beneath NE baltica, Geological Society, London, Memoirs, 30(1), 75–85, doi: 10.1144/GSL.MEM.2004.030.01.08.
Peucat, J. J., Y. Ohta, D. G. Gee, and J. Bernard-Griffiths (1989), UPb, sr and nd evidence for grenvillian and latest proterozoic tectonothermal activity in the spitsbergen caledonides, arctic ocean, Lithos, 22(4), 275–285, doi: 10.1016/0024- 4937(89)90030-3.
Phillips, T. B., and K. J. W. McCaffrey (2019), Terrane boundary reactivation, barriers to lateral fault propagation and reactivated fabrics: Rifting across the median batholith zone, great south basin, new zealand, Tectonics, 38(11), 4027–4053, doi: 10.1029/2019tc005772.
Phillips, T. B., C. A.-L. Jackson, R. E. Bell, O. B. Duffy, and H. Fossen (2016), Reactivation of intrabasement structures during rifting: A case study from offshore southern norway, Journal of Structural Geology, 91, 54–73, doi: 10.1016/j.jsg.2016.08.008.
Phillips, T. B., C. Magee, C. A.-L. Jackson, and R. E. Bell (2018), Determining the three-dimensional geometry of a dike swarm and its impact on later rift geometry using seismic reflection data, Geology, 46(2), 119–122, doi: 10.1130/G39672.1.
Piepjohn, K. (2000), The Svalbardian-Ellesmerian deformation of the old red sandstone and the pre-devonian basement in NW spitsbergen (svalbard), Geological Society, London, Special Publications, 180(1), 585–601, doi: 10.1144/GSL.SP.2000.180.01.31.
Rafaelsen, B., G. Elvebakk, K. Andreassen, L. Stemmerik, A. Colpaert, and T. J. Samuelsberg (2008), From detached to attached carbonate buildup complexes — 3D seismic data from the upper palaeozoic, finnmark platform, southwestern barents sea, Sedimentary geology, 206(1), 17–32, doi: 10.1016/j.sedgeo.2008.03.001.
Ramsay, D. M., B. A. Sturt, Ø. Jansen, T. B. Andersen, and S. Sinha-Roy (1985), The tectonostratigraphy of western porsangerhalvøya, finnmark, north norway, in The Caledonides Orogen – Scandinavia and Related Areas, edited by D. G. Gee and B. A. Sturt, pp. 611–619, John Wiley & Sons Ltd.
Rekant, P., N. Sobolev, A. Portnov, B. Belyatsky, G. Dipre, A. Pakhalko, V. Kaban’kov, and I. Andreeva (2019), Basement segmentation and tectonic structure of the lomonosov ridge, arctic ocean: Insights from bedrock geochronology, Journal of Geodynamics, 128, 38–54, doi: 10.1016/j.jog.2019.05.001.
Remizov, D., and V. Pease (2004), The dzela complex, polar urals, russia: a neoproterozoic island arc, Geological Society, London, Memoirs, 30(1), 107–123, doi: 10.1144/GSL.MEM.2004.030.01.10.
Remizov, D. N. (2003), Metabasite basement of the voikar island arc in the polar urals, Polarforschung, 73(2/3), 49–57.
Riber, L., H. Dypvik, and R. Sørlie (2015), Altered basement rocks on the utsira high and its surroundings, norwegian north sea, Norwegian Journal of Geology, doi: 10.17850/njg95-1-04.
Riis, F., J. Vollset, and M. Sand (1986), Tectonic development of the western margin of the barents sea and adjacent areas, in
Future Petroleum Provinces of the World, pp. 661–675, AAPG Special Volumes.
Roberts, D. (1983), Devonian tectonic deformation in the norwegian caledonides and its regional perspectives, Norges geologiske undersøkelse, 380, 85–96.
Roberts, D. (1998), Berggrunnskart Honningsvåg–Geologisk kart over norge, M 1: 250 000.
Roberts, D., A. Siedlecka, and V. G. Olovyanishnikov (2004), Neoproterozoic, passive-margin, sedimentary systems of the kanin peninsula, and northern and central timan, NW russia, Geological Society, London, Memoirs, 30(1), 5–17, doi: 10.1144/GSL.MEM.2004.030.01.02.
Rønnevik, H., and H.-P. Jacobsen (1984), Structural highs and basins in the western barents sea, in Petroleum Geology of the North European Margin, pp. 19–32, Springer Netherlands, doi: 10.1007/978-94-009-5626-1_3.
Rosa, D., J. Majka, K. Thrane, and P. Guarnieri (2016), Evidence for timanian-age basement rocks in north greenland as documented through U-Pb zircon dating of igneous xenoliths from the midtkap volcanic centers, Precambrian research, 275, 394–405, doi: 10.1016/j.precamres.2016.01.005.
Samuelsberg, T. J., G. Elvebakk, and L. Stemmerik (2003), Late palaeozoic evolution of the finnmark platform, southern norwegian barents sea, Norwegian Journal of Geology/Norsk Geologisk Forening, 83(4).
Schaaf, N. W., P. T. Osmundsen, R. Van der Lelij, J. Schönenberger, O. K. Lenz, T. Redfield, and K. Senger (2021), Tectono- sedimentary evolution of the eastern forlandsundet graben, svalbard, Norwegian Journal of Geology, doi: 10.17850/njg100- 4-4.
Sibson, R. H. (1977), Fault rocks and fault mechanisms, Journal of the Geological Society, 133(3), 191–213, doi: 10.1144/gsjgs.133.3.0191.
Siedlecka, A. (1975), Late precambrian stratigraphy and structure of the north-eastern margin of the fennoscandian shield (East-Finnmark-Timan region), Tech. Rep. 316, Norges geologiske undersøkelse.
Siedlecka, A., and D. Roberts (1995), Report from a visit to the komi branch of the russian academy of sciences in syktyvkar, russia, and from fieldwork in the central timans, august 1995, Tech. Rep. 95.149, Geological Survey of Norway.
Siedlecka, A., and S. Siedlecki (1967), Some new aspects of the geology of varanger peninsula (northern norway), Norges geologiske undersøkelse, 247, 288–306.
Siedlecka, A., and S. Siedlecki (1971), Late precambrian sedimentary rocks of the Tanafjord-Varangerfjord region of varanger peninsula, northern norway, in The Caledonian Geology of Northern Norway, edited by D. Roberts and M. Gustavson, pp. 246–294, Norges geologiske undersøkelse.
Slagstad, T., V. A. Melezhik, C. L. Kirkland, K. B. Zwaan, D. Roberts, I. M. Gorokhov, and A. E. Fallick (2006), Carbonate isotope chemostratigraphy suggests revisions to the geological history of the west finnmark caledonides, northern norway, Journal of the Geological Society, 163(2), 277–289, doi: 10.1144/0016-764905-021.
Slagstad, T., C. Barrére, B. Davidsen, and R. K. Ramstad (2008), Petrophysical and thermal properties of pre-devonian basement rocks on the norwegian continental margin, Geological Survey of Norway Bulletin, 44, 1–6.
Steel, R., J. Gjelberg, W. Helland-Hansen, K. Kleinspehn, A. Nøttvedt, and M. Rye-Larsen (1985), The tertiary Strike-Slip basins and orogenic belt of spitsbergen, Society of Economic Paleontologists and Mineralogists Special Publications, 37, 339–359, doi: 10.2110/pec.85.37.0319.
Steltenpohl, M. G., D. Moecher, A. Andresen, J. Ball, S. Mager, and W. E. Hames (2011), The eidsfjord shear zone, Lofoten– Vesterålen, north norway: An early devonian, paleoseismogenic low-angle normal fault, Journal of Structural Geology, 33(5), 1023–1043, doi: 10.1016/j.jsg.2011.01.017.
Storey, M., R. A. Duncan, and C. Tegner (2007), Timing and duration of volcanism in the north atlantic igneous province: Implications for geodynamics and links to the iceland hotspot, Chemical geology, 241(3), 264–281, doi: 10.1016/j.chemgeo.2007.01.016.
Sturt, B. A., I. R. Pringle, and D. M. Ramsay (1978), The finnmarkian phase of the caledonian orogeny, Journal of the Geological Society, 135(6), 597–610, doi: 10.1144/gsjgs.135.6.0597.
Sund, T., O. Skarpnes, L. N. Jensen, and R. M. Larsen (1986), Tectonic development and hydrocarbon potential offshore troms, northern norway, in Future Petroleum Provinces of the World, vol. 131, pp. 615–627, American Association of Petroleum Geologists, doi: 10.1306/m40454c29.
Suppe, J., and D. A. Medwedeff (1990), Geometry and kinematics of fault-propagation folding, Eclogae Geologicae Helvetiae, 83(3), 409–454.
Tonstad, S. A. (2018), The late paleozoic development of the ottar basin from seismic 3D interpretation, Ph.D. thesis, UiT Norges arktiske universitet, Tromsø, Norway.
Torsvik, T. H., B. A. Sturt, D. M. Ramsay, H. J. Kisch, and D. Bering (1986), The tectonic implications of solundian (upper devonian) magnetization of the devonian rocks of kvamshesten, western norway, Earth and planetary science letters, 80(3), 337–347, doi: 10.1016/0012-821X(86)90115-9.
Townsend, C. (1987), Thrust transport directions and thrust sheet restoration in the caledonides of finnmark, north norway,
Journal of Structural Geology, 9(3), 345–352, doi: 10.1016/0191-8141(87)90057-5.
Townsend, C., D. Roberts, A. H. N. Rice, and R. A. Gayer (1986), The gaissa nappe, finnmark, north norway: an example of a deeply eroded external imbricate zone within the scandinavian caledonides, Journal of Structural Geology, 8(3), 431–440, doi: 10.1016/0191-8141(86)90061-1.
Vogt, T. (1928), Den norske fjellkjedes revolusjonshistorie, Norsk Geologisk Tidsskrift, 10, 97–115.
Vogt, T., and G. Horn (1941), Geology of a middle devonian cannel coal from spitsbergen, Norsk Geologisk Tidsskrift, 21, 1–12.
Wang, C.-Y., D. A. Okaya, C. Ruppert, G. A. Davis, T.-S. Guo, Z. Zhong, and H.-R. Wenk (1989), Seismic reflectivity of the whipple mountain shear zone in southern california, Journal of geophysical research, 94(B3), 2989–3005, doi: 10.1029/jb094ib03p02989.
Witt-Nilsson, P., D. G. Gee, and F. J. Hellman (1998), Tectonostratigraphy of the caledonian atomfjella antiform of northern ny friesland, svalbard, Norsk Geologisk Tidsskrift, 78(1), 67–80.
Worsley, D., T. Agdestein, J. G. Gjelberg, K. Kirkemo, A. Mørk, I. Nilsson, S. Olaussen, R. J. Steel, and L. Stemmerik (2001), The geological evolution of bjørnøya, arctic norway: implications for the barents shelf, Norsk Geologisk Tidsskrift, 81(3), 195–234.
Wrona, T., H. Fossen, I. Lecomte, C. H. Eide, and R. L. Gawthorpe (2020), Seismic expression of shear zones: Insights from 2-D point-spread-function based convolution modelling, Journal of Structural Geology, 140, 104,121, doi: 10.1016/j.jsg.2020.104121.
Ziemniak, G., J. Majka, M. Manecki, K. Walczak, P. Jeanneret, S. Mazur, and K. Kośmińska (2020), Early devonian sinistral strike- slip in the caledonian basement of oscar II land advocates for escape tectonics as a major mechanism for svalbard terranes assembly, in EGU General Assembly, EGU2020-1044, Copernicus Meetings, doi: 10.5194/egusphere-egu2020-1044.