Zircon Inheritance Refines the Cambrian Orogenic Architecture of Southeast Australia

Main Article Content

Jacob Mulder
Jacqueline Halpin
Laura Morrissey
Yousef Zoleikhaei
John Everard
Sebastien Meffre
Mike Hall
Oliver Nebel
Peter Cawood

Abstract

The Selwyn Block is one of the few accreted terranes identified in the vast Paleozoic Tasmanides of eastern Australia and its incorporation into this orogen marks a first-order event in the tectonic evolution of the Pacific margin of Gondwana. However, the age, composition, and paleogeography of the Selwyn Block are poorly understood because it is almost completely concealed in the middle and lower crust. The prevailing hypothesis suggests the Selwyn Block is a northern continuation of the Proterozoic Western Tasmania Terrane. We test this hypothesis by comparing inherited zircon U-Pb ages (n = 881) from early Paleozoic granitoids intruding the Selwyn Block and the Western Tasmania Terrane. Phase equilibria modelling confirms that typical Western Tasmania Terrane lithologies are melt-fertile and would have contributed inherited zircon grains to local granitoids. The inherited zircon age signature of granitoids in the Western Tasmania Terrane mirrors detrital zircon ages from local Proterozoic strata with age populations at ca. 1430 Ma and 1800--1600 Ma. In comparison, granitoids intruding the Selwyn Block have ca. 600--500 Ma and ca. 1200--900 Ma inherited zircon age populations, likely derived from local Paleozoic strata. Previously published wholerock radiogenic Sr isotopic data and new zircon radiogenic hafnium isotope data also imply distinct melt sources with granitoids intruding the Selwyn Block granitoids having lower initial 87Sr/86Sr and higher initial

Article Details

How to Cite
Mulder, J., Halpin, J., Morrissey, L., Zoleikhaei, Y., Everard, J., Meffre, S., Hall, M., Nebel, O., & Cawood, P. (2025). Zircon Inheritance Refines the Cambrian Orogenic Architecture of Southeast Australia. τeκτoniκa, 3(2), 19–39. https://doi.org/10.55575/tektonika2025.3.2.98
Section
Articles

References

Arzi, A. (1978), Critical phenomena in the rheology of partially melted rocks, Tectonophysics, 44(1-4), 173–184, doi: http://doi.org/10.1016/0040-1951(78)90069-0.

Bea, F., I. Morales, J. F. Molina, P. Montero, and A. Cambeses (2021), Zircon stability grids in crustal partial melts: implications for zircon inheritance, Contributions to mineralogy and petrology, 176(3), 18, doi: http://doi.org/10.1007/s00410-021-01772-x.

Berry, R., and A. Crawford (1988), The tectonic significance of Cambrian allochthonous mafic-ultramafic complexes in Tasmania, Australian journal of earth sciences, 35(4), 523–533, doi: http://doi.org/10.1080/08120098808729467.

Berry, R., D. Steele, and S. Meffre (2008), Proterozoic metamorphism in Tasmania: Implications for tectonic reconstructions, Precambrian research, 166(1-4), 387–396, doi: http://doi.org/10.1016/J.PRECAMRES.2007.05.004.

Berry, R. F. (2014), Cambrian tectonics, Geological Evoluton of Tasmania, vol. Special Publication 24, Geological Society of Australia (Tasmania Division), Hobart.

Berry, R. F., G. A. Jenner, S. Meffre, and M. N. Tubrett (2001), A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?, Earth and planetary science letters, 192(2), 207–222, doi: http://doi.org/10.1016/s0012-821x(01)00436-8.

Birch, W. D., and A. Andrew (2024), Platinum-group-element minerals (‘osmiridium’) from Waratah Bay, Victoria, Australia, and a review of other reported Victorian occurrences, Australian journal of earth sciences, 71(3), 390–410, doi: http://doi.org/10.1080/08120099.2024.2314644.

Black, L. P., D. B. Seymour, K. D. Corbett, S. F. Cox, J. E. Streit, R. S. Bottril, C. R. Calver, J. L. Everard, G. R. Green, M. P. Mcclenaghan, J. Pemberton, J. Taheri, and N. J. Turner (1997), Dating Tasmania’s oldest geological events. Australian Geological Survey Organization Record.

Black, L. P., S. L. Kamo, I. S. Williams, R. Mundil, D. Davis, R. Korsch, and C. Foudoulis (2003), The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards, Chemical geology, 200(1-2), 171–188, doi: http://doi.org/10.1016/S0009-2541(03)00166-9.

Black, L. P., C. Calver, D. B. Seymour, and A. Reed (2004), SHRIMP U–Pb detrital zircon ages from Proterozoic and Early Palaeozoic sandstones and their bearing on the early geological evolution of Tasmania, Australian journal of earth sciences, 51(6), 885–900, doi: http://doi.org/10.1111/j.1400-0952.2004.01091.x.

Black, L. P., J. Everard, M. P. McClenaghan, R. Korsch, C. Calver, A. Fioretti, A. Brown, and C. Foudoulis (2010), Controls on Devonian–Carboniferous magmatism in Tasmania, based on inherited zircon age patterns, Sr, Nd and Pb isotopes, and major and trace element geochemistry, Australian journal of earth sciences, 57 (7), 933–968, doi: http://doi.org/10.1080/08120099.2010.509407.

Bodorkos, S., P. L. Blevin, C. J. Simpson, P. J. Gilmore, R. A. Glen, J. E. Greenfield, R. Hegarty, and C. D. Quinn (2013), New SHRIMP U-Pb zircon ages from the Lachlan, Thomson and Delamerian orogens, New South Wales, Tech. rep., Tech. Rep. GS2013/0427, Geological Survey of New South Wales, Maitland.

Boutelier, D., A. Chemenda, and J.-P. Burg (2003), Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments, Earth and planetary science letters, 212(1-2), 31–45, doi: http://doi.org/10.1016/s0012-821x(03)00239-5.

Bouvier, A., J. D. Vervoort, and P. J. Patchett (2008), The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth and planetary science letters, 273(1-2), 48–57, doi: http://doi.org/10.1016/j.epsl.2008.06.010.

Brown, D. A., M. Hand, and L. J. Morrissey (2021), Zircon petrochronology and mineral equilibria of the eclogites from western Tasmania: Interrogating the early Palaeozoic East Gondwana subduction record, Gondwana research: international geoscience journal, 93, 252–274, doi: http://doi.org/10.1016/j.gr.2021.02.015.

Brown, D. A., M. Hand, L. Morrissey, J. L. Payne, and A. McNeill (2025), Warm continental subduction initiated by back-arc collapse – Evidence from remote south-west Tasmania, Geoscience frontiers, 16(3), 102,009, doi: http://doi.org/10.1016/j.gsf.2025.102009.

Bruce, M. (2018), Petrology, geochemistry and a probable late Cambrian age for harzburgites of the Coolac Serpentinite, New South Wales, Australia, Australian journal of earth sciences, 65(3), 335–355, doi: http://doi.org/10.1080/08120099.2018.1433235.

Calver, C. R., J. L. Everard, R. F. Berry, R. S. Bottrill, and D. B. Seymour (2014), Proterozoic Tasmania, in Geological Evolution of Tasmania, edited by K. D. Corbett, P. G. Quilty, and C. R. Calver, Geological Society of Australia (Tasmanian Division), Sydney, Australia.

Cawood, P. A. (2005), Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic, Earth-science reviews, 69(3-4), 249–279, doi: http://doi.org/10.1016/j.earscirev.2004.09.001.

Cawood, P. A., A. Kröner, W. J. Collins, T. M. Kusky, W. D. Mooney, and B. F. Windley (2009), Accretionary orogens through Earth history, Geological Society special publication, 318(1), 1–36, doi: http://doi.org/10.1144/sp318.1.

Cayley, R. (2011), Exotic crustal block accretion to the eastern Gondwanaland margin in the Late Cambrian–Tasmania, the Selwyn Block, and implications for the Cambrian–Silurian evolution of the Ross, Delamerian, and Lachlan orogens, Gondwana research: international geoscience journal, 19(3), 628–649, doi: http://doi.org/10.1016/J.GR.2010.11.013.

Cayley, R. A., D. H. Taylor, A. H. M. VandenBerg, and D. H. Moore (2002), Proterozoic – Early Palaeozoic rocks and the Tyennan Orogeny in central Victoria: The Selwyn Block and its tectonic implications, Australian journal of earth sciences, 49(2), 225–254, doi: http://doi.org/10.1046/j.1440-0952.2002.00921.x.

Cayley, R. A., R. J. Korsch, D. H. Moore, R. D. Costelloe, A. Nakamura, C. E. Willman, T. J. Rawling, V. J. Morand, P. B. Skladzien, and P. J. O’Shea (2011), Crustal architecture of central Victoria: results from the 2006 deep crustal reflection seismic survey, Australian journal of earth sciences, 58(2), 113–156, doi: http://doi.org/10.1080/08120099.2011.543151.

Chappell, B., and A. White (1992), I- and S-type granites in the Lachlan Fold Belt, Earth and environmental science transactions of the Royal Society of Edinburgh, 83(1-2), 1–26, doi: http://doi.org/10.1017/S0263593300007720.

Chappell, B. W., and A. J. R. White (2001), Two contrasting granite types: 25 years later, Australian journal of earth sciences, 48(4), 489–499, doi: http://doi.org/10.1046/j.1440-0952.2001.00882.x.

Chmielowski, R., and R. Berry (2012), The Cambrian metamorphic history of Tasmania: The Metapelites, Australian journal of earth sciences, 59(7), 1007–1019, doi: http://doi.org/10.1080/08120099.2012.724449.

Clark, C., D. Kelsey, F. Kohanpour, C. Kirkland, K. Rankenburg, and S. Makin (2023), A comparison of fast pulse and conventional LA-ICP-MS detrital zircon geochronology: A large n detrital zircon study from the Centralian Superbasin, northwestern Australia, Precambrian research, 393, 107,103, doi: http://doi.org/10.1016/j.precamres.2023.107103.

Clemens, J. (2023), Devonian ignimbrites of central Victoria: explosive magmas from multiple sources, and deep crustal structure in the Selwyn Block, Australian journal of earth sciences, 70(4), 535–547, doi: http://doi.org/10.1080/08120099.2023.2194358.

Clemens, J., and I. Buick (2019), Proterozoic VanDieland in Central Victoria: ages, compositions and source depths for late devonian silicic magmas, Australian journal of earth sciences, 66(4), 519–530, doi: http://doi.org/10.1080/08120099.2018.1554603.

Clemens, J. D., G. Stevens, and L. M. Coetzer (2023), Zircon inheritance, sources of Devonian granitic magmas and crustal structure in central Victoria, Australian journal of earth sciences, 70(2), 227–259, doi: http://doi.org/10.1080/08120099.2023.2139757.

Collins, W. (2002), Nature of extensional accretionary orogens, Tectonics, 21(4), 6–1–6–12, doi: http://doi.org/10.1029/2000TC001272.

Collins, W. J. (1996), Lachlan Fold Belt granitoids: products of three-component mixing, Earth and environmental science transactions of the Royal Society of Edinburgh, 87 (1-2), 171–181, doi: http://doi.org/10.1017/s0263593300006581.

Crawford, A., S. Meffre, R. J. Squire, L. Barron, and T. Falloon (2007), Middle and Late Ordovician magmatic evolution of the Macquarie Arc, Lachlan Orogen, New South Wales, Australian journal of earth sciences, 54(2-3), 181–214, doi: http://doi.org/10.1080/08120090701227471.

Crawford, A. J., and R. F. Berry (1992), Tectonic implications of Late Proterozoic-Early Palaeozoic igneous rock associations in western Tasmania, Tectonophysics, 214(1-4), 37–56.

Crawford, A. J., R. A. Cayley, D. H. Taylor, V. J. Morand, C. M. Gray, A. I. S. Kemp, K. E. Wohlt, A. H. M. VandenBerg, D. H. Moore, S. Maher, N. G. Direen, J. Edwards, A. G. Donaghy, J. A. Anderson, and L. P. Black (2003), Neoproterozoic and Cambrian continental rifting, continent-arc collision and post-collisional magmatism, in Evolution of the Palaeozoic Basement, Geological Society of Australia, Sydney, Australia.

Edwards, J., K. R. Slater, D. F. Hutchinson, A. Olshina, and K. E. Wohlt (1998), 1:100 000 Geophysical Map Series: Heathcote and parts of Woodend and Echuca 1:100 000 map, geological interpretation of geophysical features, Department of Natural Resources and Environment, Melbourne, VIC, Australia.

Fergusson, C., and R. A. Henderson (2015), Early Palaeozoic continental growth in the Tasmanides of northeast Gondwana and its implications for Rodinia assembly and rifting, Gondwana research: international geoscience journal, 28(3), 933–953, doi: http://doi.org/10.1016/J.GR.2015.04.001.

Foden, J., M. Elburg, S. Turner, C. Clark, M. L. Blades, G. Cox, A. S. Collins, K. Wolff, and C. George (2020), Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin, Gondwana research: international geoscience journal, 81, 490–521, doi: http://doi.org/10.1016/j.gr.2019.12.006.

Forster, D. B., G. R. Carr, and P. M. Downes (2011), Lead isotope systematics of ore systems of the Macquarie Arc Implications for arc substrate, Gondwana research: international geoscience journal, 19(3), 686–705, doi: http://doi.org/10.1016/j.gr.2010.11.010.

Foster, D. A., D. R. Gray, C. Spaggiari, G. Kamenov, and F. P. Bierlein (2009), Palaeozoic Lachlan orogen, Australia; accretion and construction of continental crust in a marginal ocean setting: isotopic evidence from Cambrian metavolcanic rocks, Geological Society special publication, 318(1), 329–349, doi: http://doi.org/10.1144/sp318.12.

Fuis, G. (1998), West margin of North America a synthesis of recent seismic transects, Tectonophysics, 288(1-4), 265–292, doi: http://doi.org/10.1016/S0040-1951(97)00300-4.

Gibson, G. M., D. C. Champion, and T. R. Ireland (2015), Preservation of a fragmented late Neoproterozoic–earliest Cambrian hyper-extended continental-margin sequence in the Australian Delamerian Orogen, Geological Society special publication, 413(1), 269–299, doi: http://doi.org/10.1144/sp413.8.

Glen, R. (2013), Refining accretionary orogen models for the Tasmanides of eastern Australia, Australian journal of earth sciences, 60(3), 315–370, doi: http://doi.org/10.1080/08120099.2013.772537.

Glen, R., A. Crawford, I. Percival, and L. Barron (2007), Early Ordovician development of the Macquarie Arc, Lachlan Orogen, New South Wales, Australian journal of earth sciences, 54(2-3), 167–179, doi: http://doi.org/10.1080/08120090601146797.

Glen, R., E. Belousova, and W. Griffin (2016), Different styles of modern and ancient non-collisional orogens and implications for crustal growth: a Gondwanaland perspective, Canadian journal of earth sciences, 53(11), 1372–1415, doi: http://doi.org/10.1139/CJES-2015-0229.

Glen, R., I. Fitzsimons, W. Griffin, and A. Saeed (2017), East Antarctic sources of extensive Lower–Middle Ordovician turbidites in the Lachlan Orogen, southern Tasmanides, eastern Australia, Australian journal of earth sciences, 64(2), 143–224, doi: http://doi.org/10.1080/08120099.2017.1273256.

Glen, R. A., and R. A. Cooper (2021), Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian, Earth-science reviews, 220(103687), 103,687, doi: http://doi.org/10.1016/j.earscirev.2021.103687.

Gray, C. M. (1990), A strontium isotopic traverse across the granitic rocks of southeastern Australia: Petrogenetic and tectonic implications, Australian journal of earth sciences, 37 (3), 331–349, doi: http://doi.org/10.1080/08120099008727931.

Gray, C. M., and A. Kemp (2009), The two-component model for the genesis of granitic rocks in southeastern Australia — Nature of the metasedimentary-derived and basaltic end members, Lithos, 111(3-4), 113–124, doi: http://doi.org/10.1016/J.LITHOS.2009.04.010.

Gray, D. (1997), Tectonics of the southeastern Australian Lachlan Fold Belt: structural and thermal aspects, Geological Society special publication, 121(1), 149–177, doi: http://doi.org/10.1144/GSL.SP.1997.121.01.07.

Gray, D. R., and D. Foster (2004), Tectonic evolution of the Lachlan Orogen, southeast Australia: Historical review, data synthesis and modern perspectives, Australian journal of earth sciences, 51(6), 773–817, doi: http://doi.org/10.1111/j.1400-0952.2004.01092.x.

Gray, D. R., M. Vicary, and A. W. McNeill (2023), The Tasmanian Tyennan Domain–a structural synthesis and review with tectonic and dynamic implications for continental margin subduction and exhumation, Australian journal of earth sciences, 71(2), 153–210, doi: http://doi.org/10.1080/08120099.2023.2280604.

Greenfield, J., R. Musgrave, M. Bruce, P. Gilmore, and K. J. Mills (2011), The Mount Wright Arc: A Cambrian subduction system developed on the continental margin of East Gondwana, Koonenberry Belt, eastern Australia, Gondwana research: international geoscience journal, 19(3), 650–669, doi: http://doi.org/10.1016/J.GR.2010.11.017.

Habib, U., S. Meffre, R. Berry, and S. Kultaksayos (2021), Detrital zircon ages, provenance and tectonic evolution in the early Paleozoic of Tasmania and Waratah Bay, Victoria, Australian journal of earth sciences, 69(5), 650–665, doi: http://doi.org/10.1080/08120099.2022.2000493.

Habib, U., S. Meffre, R. Berry, E. Belousova, and R. Bottrill (2022), Geochronology, geochemistry, and zircon hf-isotopic systematics of the middle Cambrian igneous suites and metasedimentary rocks in western Tasmania and central Victoria, SSRN Electronic Journal, 10, doi: http://doi.org/10.2139/ssrn.4124061.

Halpin, J. A., T. Jensen, P. McGoldrick, S. Meffre, R. F. Berry, J. L. Everard, C. R. Calver, J. Thompson, K. Goemann, and J. M. Whittaker (2014), Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America, Precambrian research, 250, 50–67, doi: http://doi.org/10.1016/j.precamres.2014.05.025.

Henry, D., and W. Birch (1992), Cambrian greenstone on Phillip Island, Victoria, Australian journal of earth sciences, 39(5), 567–575, doi: http://doi.org/10.1080/08120099208728050.

Johnson, E., G. Phillips, and C. Allen (2016), Ediacaran–Cambrian basin evolution in the Koonenberry Belt (eastern Australia): Implications for the geodynamics of the Delamerian Orogen, Gondwana research: international geoscience journal, 37, 266–284, doi: http://doi.org/10.1016/J.GR.2016.04.010.

Keay, S., W. J. Collins, and M. T. McCulloch (1997), A three-component Sr-Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia, Geology, 25(4), 307–310, doi: http://doi.org/10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO.

Kelsey, D. E., and R. Powell (2011), Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system: PHASE EQUILIBRIA FOR ZIRCON-BEARING METAPELITIC ROCKS, Journal of metamorphic geology, 29(1), 151–166, doi: http://doi.org/10.1111/j.1525-1314.2010.00910.x.

Kelsey, D. E., C. Clark, and M. Hand (2008), Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites, Journal of metamorphic geology, 26(2), 199–212, doi: http://doi.org/10.1111/j.1525-1314.2007.00757.x.

Kemp, A. I. S. (2003), Plutonic boninite-like rocks in an anatectic setting: Tectonic implications for the Delamerian orogen in southeastern Australia, Geology, 31(4), 371–374, doi: http://doi.org/10.1130/0091-7613(2003)031<0371:PBLRIA>2.0.CO;

Holden, P., P. Lanc, T. R. Ireland, T. Harrison, J. J. Foster, and Z. Bruce (2009), Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains, International journal of mass spectrometry, 286(2-3), 53–63, doi: http://doi.org/10.1016/J.IJMS.2009.06.007.

Holland, T. J. B., and R. Powell (2011), An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: THERMODYNAMIC DATASET FOR PHASES OF PETROLOGICAL INTEREST, Journal of metamorphic geology, 29(3), 333–383, doi: http://doi.org/10.1111/j.1525-1314.2010.00923.x.

Holm, O., and R. Berry (2002), Structural history of the Arthur Lineament, northwest Tasmania: An analysis of critical outcrops, Australian journal of earth sciences, 49(2), 167–185, doi: http://doi.org/10.1046/j.1440-0952.2002.00918.x.

Hronsky, J., D. Groves, R. Loucks, and G. Begg (2012), A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods, Mineralium deposita, 47 (4), 339–358, doi: http://doi.org/10.1007/s00126-012-0402-y.

Jackson, S., N. Pearson, W. Griffin, and E. Belousova (2004), The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chemical geology, 211(1-2), 47–69, doi: http://doi.org/10.1016/J.CHEMGEO.2004.06.017.

Kemp, A. I. S., C. M. Gray, D. J. Ellis, J. A. C. Anderson, and D. J. Ferguson (2002), Delamerian Glenelg tectonic zone, western Victoria: Characterisation and synthesis of igneous rocks, Australian journal of earth sciences, 49(2), 201–224, doi: http://doi.org/10.1046/j.1440-0952.2002.00920.x.

Kemp, A. I. S., C. J. Hawkesworth, G. L. Foster, B. A. Paterson, J. D. Woodhead, J. M. Hergt, C. M. Gray, and M. J. Whitehouse (2007), Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon, Science (New York, N.Y.), 315(5814), 980–983, doi: http://doi.org/10.1126/science.1136154.

Kemp, A. I. S., C. J. Hawkesworth, W. J. Collins, C. M. Gray, and P. L. Blevin (2009), Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia, Earth and planetary science letters, 284(3), 455–466, doi: http://doi.org/10.1016/j.epsl.2009.05.011.

Kemp, A. I. S., P. L. Blevin, and M. D. Norman (2020), A SIMS U-Pb (zircon) and Re-Os (molybdenite) isotope study of the early Paleozoic Macquarie Arc, southeastern Australia: Implications for the tectono-magmatic evolution of the paleo-Pacific Gondwana margin, Gondwana research: international geoscience journal, 82, 73–96, doi: http://doi.org/10.1016/j.gr.2019.12.015.

Kohn, M. J., S. L. Corrie, and C. Markley (2015), The fall and rise of metamorphic zircon, The American mineralogist, 100(4), 897–908, doi: http://doi.org/10.2138/am-2015-5064.

Korja, A., and P. Heikkinen (2005), The accretionary Svecofennian orogen—insight from the BABEL profiles, Precambrian research, 136(3-4), 241–268, doi: http://doi.org/10.1016/j.precamres.2004.10.007.

Leslie, C. D. (2021), Metallogeny of the Cowal district, New South Wales, Australia, Ph.D. thesis, University of Tasmania.

Lewis, C. J., D. H. Taylor, R. A. Cayley, A. Schofield, and P. B. Skladzien (2016), New SHRIMP U-Pb zircon ages from the Stavely region, western Victoria, vol. 27, Canberra ACT: Geoscience Australia Record.

Lloyd, J., A. Collins, M. Blades, S. Gilbert, Mulder, and K. Amos (2024), Mid- to late neoproterozoic development and provenance of the Adelaide Superbasin, Tektonika, 2(2), 85–111, doi: http://doi.org/10.55575/tektonika2024.2.2.65.

Lloyd, J. C., M. Blades, J. Counts, A. Collins, Amos, B. Wade, J. W. Hall, S. B. Hore, A. L. Ball, S. Shahin, and M. Drabsch (2020), Neoproterozoic geochronology and provenance of the Adelaide Superbasin, Precambrian research, 350, 105,849, doi: http://doi.org/10.1016/j.precamres.2020.105849.

Lloyd, J. C., A. Collins, M. Blades, S. Gilbert, and K. Amos (2022), Early evolution of the Adelaide Superbasin, Géosciences, 12(4), 154, doi: http://doi.org/10.31223/x5nh0g.

Manton, R., S. Buckman, A. Nutman, and V. Bennett (2017), Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U–Pb–Hf isotope evidence from Barry Station, New South Wales, Australia, Lithos, 286, 125–150, doi: http://doi.org/10.1016/J.LITHOS.2017.06.002.

Matthews, W. A., and B. Guest (2017), A practical approach for collecting large-ndetrital zircon U-Pb data sets by quadrupole LA-ICP-MS, Geostandards and geoanalytical research, 41(2), 161–180, doi: http://doi.org/10.1111/ggr.12146.

McClenaghan, M. P. (2006), The geochemistry of tasmanian Devonian-Carboniferous granites and implications for the composition of their source rock, Tasmanian Geological Survey.

McLean, M., V. Morand, and R. Cayley (2010), Gravity and magnetic modelling of crustal structure in central Victoria: what lies under the Melbourne Zone?, Australian journal of earth sciences, 57 (2), 153–173, doi: http://doi.org/10.1080/08120090903416245.

Meffre, S., R. Berry, and M. Hall (2000), Cambrian metamorphic complexes in Tasmania: Tectonic implications, Australian journal of earth sciences, 47 (6), 971–985, doi: http://doi.org/10.1046/j.1440-0952.2000.00825.x.

Milan, L. A., E. A. Belousova, R. A. Glen, T. Chapman, J. Kalmbach, B. Fu, and P. M. Ashley (2021), A new reconstruction for Permian east Gondwana based on zircon data from ophiolite of the east Australian great serpentinite belt, Geophysical research letters, 48(1), e2020GL090,293, doi: http://doi.org/10.1029/2020gl090293.

Moore, D., P. Betts, and M. Hall (2016), Constraining the VanDieland microcontinent at the edge of East Gondwana, Australia, Tectonophysics, 687, 158–179, doi: http://doi.org/10.1016/J.TECTO.2016.09.009.

Moresi, L., P. Betts, M. Miller, and R. Cayley (2014), Dynamics of continental accretion, Nature, 508(7495), 245–248, doi: http://doi.org/10.1038/nature13033.

Morrissey, L., M. Hand, K. Lane, D. Kelsey, and R. Dutch (2016), Upgrading iron-ore deposits by melt loss during granulite facies metamorphism, Ore geology reviews, 74, 101–121, doi: http://doi.org/10.1016/J.OREGEOREV.2015.11.012.

Mortensen, J., J. Gemmell, A. McNeill, and R. Friedman (2015), High-precision U-Pb zircon chronostratigraphy of the Mount Read volcanic belt in western Tasmania, Australia: Implications for VHMS deposit formation, Economic geology and the bulletin of the Society of Economic Geologists, 110(2), 445–468, doi: http://doi.org/10.2113/ECONGEO.110.2.445.

Mulder, J., J. Halpin, and N. Daczko (2015a), Mesoproterozoic Tasmania: witness to the East Antarctica-Laurentia connection within Nuna, Geology, 43(9), 759–762, doi: http://doi.org/10.1130/G36850.1.

Mulder, J., R. Berry, and R. Scott (2015b), The structure and metamorphism of the Red Point Metamorphic Complex—A newly discovered high-pressure metamorphic complex from the south coast of Tasmania, Australian journal of earth sciences, 62(8), 969–983, doi: http://doi.org/10.1080/08120099.2015.1117021.

Mulder, J., R. Berry, S. Meffre, and J. Halpin (2016), The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin, Gondwana research: international geoscience journal, 38, 351–369, doi: http://doi.org/10.1016/J.GR.2015.12.010.

Mulder, J., K. Karlstrom, J. Halpin, A. Merdith, C. Spencer, R. Berry, and B. McDonald (2018a), Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon, Geology, 46(11), 991–994, doi: http://doi.org/10.1130/G45225.1.

Mulder, J., R. Berry, J. Halpin, S. Meffre, and J. Everard (2018b), Depositional age and correlation of the Oonah Formation: refining the timing of Neoproterozoic basin formation in Tasmania, Australian journal of earth sciences, 65(3), 391–407, doi: http://doi.org/10.1080/08120099.2018.1426629.

Mulder, J., J. Everard, G. Cumming, S. Meffre, R. Bottrill, A. S. Merdith, J. Halpin, A. McNeill, and P. A. Cawood (2020), Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia, Earth-science reviews, 201, 103,041, doi: http://doi.org/10.1016/j.earscirev.2019.103041.

Mulder, J., O. Nebel, N. Gardiner, P. A. Cawood, A. Wainwright, and T. Ivanic (2021), Crustal rejuvenation stabilised Earth’s first cratons, Nature communications, 12(1), 3535, doi: http://doi.org/10.1038/s41467-021-23805-6.

Musgrave, R. (2015), Oroclines in the Tasmanides, Journal of structural geology, 80, 72–98, doi: http://doi.org/10.1016/J.JSG.2015.08.010.

Noll, C., and M. Hall (2005), Structural architecture of the Owen Conglomerate, West Coast Range, western Tasmania: field evidence for Late Cambrian extension, Australian journal of earth sciences, 52(3), 411–426, doi: http://doi.org/10.1080/08120090500134563.

Noll, C. A., and M. Hall (2003), Stratigraphic architecture and depositional setting of the coarse-grained Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australian journal of earth sciences, 50(6), 835–852, doi: http://doi.org/10.1111/j.1400-0952.2003.01030.x.

Offler, R., S. McKnight, and V. Morand (1998), Tectonothermal history of the western Lachlan Fold Belt, Australia: insights from white mica studies, Journal of metamorphic geology, 16(4), 531–540, doi: http://doi.org/10.1111/j.1525-1314.1998.00153.x.

O’mara, M., S. Mahmud, and M. Hall (2018), Early growth fault activity: new evidence for extension in the upper Cambrian Owen Group, Proprietary Peak, western Tasmania, Australia, Australian journal of earth sciences, 65(2), 209–220, doi: http://doi.org/10.1080/08120099.2018.1413010.

Paton, C., J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt (2011), Iolite: Freeware for the visualisation and processing of mass spectrometric data, Journal of analytical atomic spectrometry, 26(12), 2508–2518, doi: http://doi.org/10.1039/C1JA10172B.

Phillips, G., R. Offler, D. Rubatto, and D. Phillips (2015), High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia, Tectonics, 34(9), 1979–2010, doi: http://doi.org/10.1002/2015TC003920.

Pilia, S., S. Pilia, N. Rawlinson, R. Cayley, T. Bodin, R. Musgrave, A. Reading, N. Direen, and M. Young (2015), Evidence of micro-continent entrainment during crustal accretion, Scientific reports, 5(1), 8218, doi: http://doi.org/10.1038/srep08218.

Powell, R., and T. Holland (1988), An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program, Journal of metamorphic geology, 6(2), 173–204, doi: http://doi.org/10.1111/J.1525-1314.1988.TB00415.X.

Quinn, C., I. Percival, R. Glen, and W. Xiao (2014), Ordovician marginal basin evolution near the palaeo-Pacific east Gondwana margin, Australia, Journal of the Geological Society, 171(5), 723–736, doi: http://doi.org/10.1144/jgs2012-034.

Rosenbaum, G. (2018), The Tasmanides: Phanerozoic tectonic evolution of eastern Australia, Annual review of earth and planetary sciences, 46(1), 291–325, doi: http://doi.org/10.1146/ANNUREV-EARTH-082517-010146.

Rossiter, A., and C. M. Gray (2008), Barium contents of granites: key to understanding crustal architecture in the southern Lachlan Fold Belt?, Australian journal of earth sciences, 55(4), 433–448, doi: http://doi.org/10.1080/08120090801888586.

Scherer, E., C. Münker, and K. Mezger (2001), Calibration of the lutetium-hafnium clock, Science, 293(5530), 683–687, doi: http://doi.org/10.1126/SCIENCE.1061372.

Snyder, D., H. Prasetyo, D. Blundell, C. Pigram, A. Barber, A. Richardson, and S. Tjokosaproetro (1996), A dual doubly vergent orogen in the Banda Arc continent-arc collision zone as observed on deep seismic reflection profiles, Tectonics, 15(1), 34–53, doi: http://doi.org/10.1029/95TC02352.

Spaggiari, C., D. Gray, D. Foster, and S. McKnight (2003), Evolution of the boundary between the western and central Lachlan Orogen: Implications for Tasmanide tectonics, Australian journal of earth sciences, 50(5), 725–749, doi: http://doi.org/10.1111/j.1440-0952.2003.01022.x.

Squire, R. J., I. Campbell, C. Allen, and C. Wilson (2006), Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth, Earth and planetary science letters, 250(1-2), 116–133, doi: http://doi.org/10.1016/J.EPSL.2006.07.032.

Turner, N., and R. Bottrill (2001), Blue amphibole, Arthur Metamorphic Complex, Tasmania: Composition and regional tectonic setting, Australian journal of earth sciences, 48(1), 167–181, doi: http://doi.org/10.1046/j.1440-0952.2001.00847.x.

Turner, N., L. P. Black, and M. Kamperman (1998), Dating of Neoproterozoic and Cambrian orogenies in Tasmania, Australian journal of earth sciences, 45(5), 789–806, doi: http://doi.org/10.1080/08120099808728433.

van der Molen, I., and M. S. Paterson (1979), Experimental deformation of partially-melted granite, Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 70(3), 299–318, doi: http://doi.org/10.1007/bf00375359.

VandenBerg, A. H. M., C. E. Willman, V. J. Morand, D. Moore, B. A. Simons, S. Maher, R. A. Cayley, D. H. Taylor, and A. Radojkovic (2000), The Tasman Fold Belt System in Victoria, vol. 47, Geological Survey of Victoria, Australia.

Vermeesch, P. (2018), IsoplotR: A free and open toolbox for geochronology, Geoscience frontiers, 9(5), 1479–1493, doi: http://doi.org/10.1016/J.GSF.2018.04.001.

Vervoort, J., T. Plank, and J. Prytulak (2011), The Hf–Nd isotopic composition of marine sediments, Geochimica et cosmochimica acta, 75(20), 5903–5926, doi: http://doi.org/10.1016/J.GCA.2011.07.046.

Wallace, L., R. Mccaffrey, J. Beavan, and S. Ellis (2005), Rapid microplate rotations and backarc rifting at the transition between collision and subduction, Geology, 33(11), 857–860, doi: http://doi.org/10.1130/G21834.1.

Wallace, L., S. Ellis, and P. Mann (2009), Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings, Geochemistry, geophysics, geosystems: G(3), 10(5), doi: http://doi.org/10.1029/2008GC002220.

White, R., R. Powell, T. Holland, T. Johnson, and E. Green (2014), New mineral activity–composition relations for thermodynamic calculations in metapelitic systems, Journal of metamorphic geology, 32(3), 261–286, doi: http://doi.org/10.1111/jmg.12071.

Wickham, S. (1987), The segregation and emplacement of granitic magmas, Journal of the Geological Society, 144(2), 281–297, doi: http://doi.org/10.1144/gsjgs.144.2.0281.

Wiedenbeck, M., P. Allé, F. Corfu, W. Griffin, M. Meier, F. Oberli, A. Quadt, J. C. Roddick, and W. Spiegel (1995), Three natural zircon standards for u-Th-Pb, Lu-Hf, trace element and Ree analyses, Geostandards newsletter, 19(1), 1–23, doi: http://doi.org/10.1111/J.1751-908X.1995.TB00147.X.

Woodhead, J., and J. Hergt (2005), A preliminary appraisal of seven natural zircon reference materials for in situ hf isotope determination, Geostandards and geoanalytical research, 29(2), 183–195, doi: http://doi.org/10.1111/j.1751-908X.2005.tb00891.x.

Yakymchuk, C., and M. Brown (2014a), Consequences of open-system melting in tectonics, Journal of the Geological Society, 171(1), 21–40, doi: http://doi.org/10.1144/jgs2013-039.

Yakymchuk, C., and M. Brown (2014b), Behaviour of zircon and monazite during crustal melting, Journal of the Geological Society, 171(4), 465–479, doi: http://doi.org/10.1144/jgs2013-115.

Zoleikhaei, Y., J. A. Mulder, and P. A. Cawood (2024), Early Paleozoic extensional tectonics along Gondwana’s northern margin: Insights from Iran, Gondwana research: international geoscience journal, 128, 106–126, doi: http://doi.org/10.1016/j.gr.2023.10.017.