Bayesian Estimation of Surface Strain Rates in the Peri-Adriatic, Balkans and Aegean region from GNSS Velocities

Main Article Content

Marianne Métois
Cécile Lasserre
Aimine Méridi
Maxime Henriquet
Thomas Bodin

Abstract

The calculation of spatial derivatives of the lithosphere surface velocity field has become a routine task in geosciences. It provides a continuous description of strain rates characteristics (dilation, rotation, strain rate intensity, etc) and facilitates the comparison between observed strain and theoretical strain computed from rigid or viscous lithospheric deformation models. However, this derivation is highly non-unique and standard methods may fail at correctly computing the strain rate tensor. This is especially the case in regions with strong spatial heterogeneities in strain rates like the Balkans, significantly limiting the understanding of their geodynamics. We tackle this issue in the peri-Adriatic and western Aegean region, using the bayesian transdimensional approach implemented in the B-Strain code, successfully applied in California. We show that our results, providing reliable probabilistic estimates of strain rates all over the region, are less prone to interpolation artifact than those produced from standard techniques, opening new perspectives for modeling and understanding the forces at play in this seismically active region of Europe.

Article Details

How to Cite
Métois, M., Lasserre, C., Méridi, A., Henriquet, M., & Bodin, T. (2025). Bayesian Estimation of Surface Strain Rates in the Peri-Adriatic, Balkans and Aegean region from GNSS Velocities. τeκτoniκa, 3(1), 82–98. https://doi.org/10.55575/tektonika2025.3.1.99
Section
Articles

References

Armijo, R., B. Meyer, G. King, A. Rigo, and D. Papanastassiou (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophysical Journal International, 126(1), 11–53.

Athanassios, G., S. Stefan, D. George, D. Nikolai, S. Sotiris,T. Christina, F. Georgi, and P. Spyros (2005), Active fault segmentation in southwest Bulgaria and Coulomb stress triggering of the 1904 earthquake sequence, Journal of Geodynamics, 40(2-3), 316–333.

Bada, G., F. Horváth, P. Dövényi, P. Szafián, G. Windhoffer, and S. Cloetingh (2007), Present-day stress field and tectonic inversion in the Pannonian basin, Global and Planetary Change, 58(1-4), 165–180.

Baize, S., S. Amoroso, N. Belić, L. Benedetti, P. Boncio, M. Budić, F. R. Cinti, M. Henriquet, P. J. Rupnik, B. Kordić, et al. (2022), Environmental effects and seismogenic source characterization of the December 2020 earthquake sequence near Petrinja, Croatia, Geophysical Journal International.

Basili, R., L. Danciu, C. Beauval, K. Sesetyan, S. P. Vilanova, S. Adamia, P. Arroucau, J. Atanackov, S. Baize, C. Canora, R. Caputo, M. M. C. Carafa, E. M. Cushing, S. Custódio, M. B. Demircioglu Tumsa, J. C. Duarte, A. Ganas, J. García-Mayordomo, L. Gómez de la Peña, E. Gràcia, P. Jamšek Rupnik, H. Jomard, V. Kastelic, F. E. Maesano, R. Martín-Banda, S. Martínez-Loriente, M. Neres, H. Perea, B. Sket-Motnikar, M. M. Tiberti, N. Tsereteli, V. Tsironi, R. Vallone, K. Vanneste, and P. Zupančič (2022), European Fault-Source Model 2020 (EFSM20): online data on fault geometry and activity parameters, doi: 10.13127/EFSM20.

Baxter, S. C., S. Kedar, J. W. Parker, F. H. Webb, S. E. Owen, A. Sibthorpe, and D. Dong (2011), Limitations of strain estimation techniques from discrete deformation observations, Geophysical Research Letters, 38(1).

Beauval, C., J. Marinière, H. Yepes, L. Audin, J.-M. Nocquet, A. Alvarado, S. Baize, J. Aguilar, J.-C. Singaucho, and H. Jomard (2018), A new seismic hazard model for Ecuador, Bulletin of the Seismological Society of America, 108(3A), 1443–1464.

Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm, Geophysical Journal International, 178(3), 1411–1436.

Briole, P., A. Ganas, P. Elias, and D. Dimitrov (2021), The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model, Geophysical Journal International, 226(1), 468–492.

Burchfiel, C., R. W. King, A. Todosov, V. Kotzev, N. Durmurdzanov, T. Serafimovski, and B. Nurce (2006), GPS results for Macedonia and its importance for the tectonics of the Southern Balkan extensional regime, Tectonophysics, 413(3), 239–248.

Burchfiel, C. B., R. Nakov, T. Tzankov, and L. H. Royden (2000), Cenozoic extension in Bulgaria and northern Greece: the northern part of the Aegean extensional regime, Geological Society, London, Special Publications, 173(1), 325–352.

D’Agostino, N. (2014), Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy), Geophysical Research Letters, 41(4), 1155–1162.

D’Agostino, N., A. Avallone, D. Cheloni, E. D’anastasio, S. Mantenuto, and G. Selvaggi (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, Journal of Geophysical Research: Solid Earth (1978–2012), 113(B12).

d’Agostino, N., M. Métois, R. Koci, L. Duni, N. Kuka, A. Ganas, I. Georgiev, F. Jouanne, N. Kaludjerovic, and R. Kandić (2020), Active crustal deformation and rotations in the southwestern Balkans from continuous GPS measurements, Earth and Planetary Science Letters, 539, 116,246.

Daout, S., N. d’Agostino, E. Pathier, A. Socquet, J. Lavé, M.-P. Doin, M. Riesner, and L. Benedetti (2023), Along-strike variations of strain partitioning within the Apennines determined from large-scale multi-temporal InSAR analysis, Tectonophysics, 867, 230,076.

Dimitrov, D., T. Camelbeek, J. Ruegg, I. Georgiev, and E. Botev (2006), Surface seismic deformations in the Plovdiv Region (Bulgaria) by space geodesy and seismology data, SENS, pp. 14–16.

Donniol Jouve, B., A. Socquet, C. Beauval, J. Piña Valdès, and L. Danciu (2024), Consistency between the Strain Rate Model and ESHM20 Earthquake Rate Forecast in Europe: insights for seismic hazard, EGUsphere, 2024, 1–32.

Dumurdzanov, N., T. Serafimovski, and B. C. Burchfiel (2005), Cenozoic tectonics of Macedonia and its relation to the South Balkan extensional regime, Geosphere, 1(1), 1–22.

D’agostino, N., A. Copley, J. Jackson, R. Koçi, A. Hajrullai, L. Duni, and N. Kuka (2022), Active tectonics and fault evolution in the Western Balkans, Geophysical Journal International, 231(3), 2102–2126.

England, P., G. Houseman, and J.-M. Nocquet (2016), Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean, Journal of Geophysical Research: Solid Earth, 121(12), 8888–8916.

Ergintav, S., M. Floyd, D. Paradissis, H. Karabulut, P. Vernant, F. Masson, I. Georgiev, A. Ö. KONCA, U. DOĞAN, R. King, et al. (2023), New geodetic constraints on the role of faults and blocks vs. distribute strain in the Nubia-Arabia-Eurasia zone of active plate interactions, Turkish Journal of Earth Sciences, 32(3), 248–261.

Floyd, M., H. Billiris, D. Paradissis, G. Veis, A. Avallone, P. Briole, S. McClusky, J.-M. Nocquet, K. Palamartchouk, B. Parsons, et al. (2010), A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean, Journal of Geophysical Research: Solid Earth (1978–2012), 115(B10).

Ganas, A., V. Tsironi, E. Kollia, M. Delagas, C. Tsimi, and A. Oikonomou (2018), Recent upgrades of the NOA database of active faults in Greece (NOAFAULTs), Proceedings of the 19th General Assembly of WEGENER, Grenoble, France, pp. 10–13.

Gordon, R. G., and G. A. Houseman (2015), Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law, Journal of Geophysical Research: Solid Earth, 120(6), 4434–4449.

Grosset, J., S. Mazzotti, and P. Vernant (2023), Glacial-isostatic-adjustment strain rate–stress paradox in the Western Alps and impact on active faults and seismicity, Solid Earth, 14(10), 1067–1081.

Harvard (), Global Centroid Moment Tensor Catalog, http://www.globalcmt.org/CMTsearch.html.

Henriquet, M., M. Peyret, S. Dominguez, G. Barreca, C. Monaco, and S. Mazzotti (2022a), Present-day surface deformation of Sicily derived from Sentinel-1 InSAR time-Series, Journal of Geophysical Research: Solid Earth, 127 (3), e2021JB023,071.

Henriquet, M., B. Kordic, M. Métois, C. Lasserre, S. Baize, L. Benedetti, M. Spelić, and M. Vukovski (2022b), Rapid remeasure of dense civilian networks as a game-changer tool for surface deformation monitoring: The case study of the Mw 6.4 2020 Petrinja Earthquake, Croatia, Geophysical research letters, 49(24), e2022GL100,166.

Herak, M., and D. Herak (2023), Properties of the Petrinja (Croatia) earthquake sequence of 2020–2021–Results of seismological research for the first six months of activity, Tectonophysics, 858, 229,885.

Houseman, G., and P. England (1986), Finite strain calculations of continental deformation: 1. Method and general results for convergent zones, Journal of Geophysical Research: Solid Earth, 91(B3), 3651–3663.

Jenny, S., S. Goes, D. Giardini, and H.-G. Kahle (2004), Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean, Geophysical Journal International, 157 (3), 1331–1347.

Jolivet, L., C. Faccenna, B. Huet, L. Labrousse, L. Le Pourhiet, O. Lacombe, E. Lecomte, E. Burov, Y. Denèle, J.-P. Brun, et al. (2013), Aegean tectonics: Strain localisation, slab tearing and trench retreat, Tectonophysics, 597, 1–33.

Kostrov, V. (1974), Seismic moment and energy of earthquakes, and seismic flow of rock, Physics of the Solid Earth, 1, 13–21.

Kreemer, C., and N. Chamot-Rooke (2004), Contemporary kinematics of the southern Aegean and the Mediterranean Ridge, Geophysical Journal International, 157 (3), 1377–1392.

Kreemer, C., N. Chamot-Rooke, and X. Le Pichon (2004), Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data, Earth and Planetary Science Letters, 225(3-4), 329–346.

Mathey, M., C. Sue, C. Pagani, S. Baize, A. Walpersdorf, T. Bodin, L. Husson, E. Hannouz, and B. Potin (2021), Present-day geodynamics of the Western Alps: new insights from earthquake mechanisms, Solid Earth, 12(7), 1661–1681.

Mattia, M., V. Bruno, F. Cannavò, and M. Palano (2012), Evidences of a contractional pattern along the northern rim of the Hyblean Plateau (Sicily, Italy) from GPS data, Geologica Acta: an international earth science journal, 10(1), 1–8.

Mazzotti, S., T. S. James, J. Henton, and J. Adams (2005), GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example, Journal of Geophysical Research: Solid Earth, 110(B11).

McCaffrey, R. (2009), Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia, Geophysical Research Letters, 36(7).

Metois, M., N. D’Agostino, A. Avallone, N. Chamot-Rooke, A. Rabaute, L. Duni, N. Kuka, R. Koci, and I. Georgiev (2015), Insights on continental collisional processes from GPS data: Dynamics of the peri-Adriatic belts, Journal of Geophysical Research: Solid Earth, 120(12), 8701–8719.

Meyer, B., R. Armijo, and D. Dimitrov (2002), Active faulting in SW Bulgaria: possible surface rupture of the 1904 Struma earthquakes, Geophysical Journal International, 148(2), 246–255.

Moulin, A., L. Benedetti, A. Gosar, P. J. Rupnik, M. Rizza, D. Bourlès, and J.-F. Ritz (2014), Determining the present-day kinematics of the Idrija fault (Slovenia) from airborne LiDAR topography, Tectonophysics, 628,

–205.

Naydenov, K., I. Peytcheva, A. von Quadt, S. Sarov, K. Kolcheva, and D. Dimov (2013), The Maritsa strike-slip shear zone between Kostenets and Krichim towns, South Bulgaria—Structural, petrographic and isotope geochronology study, Tectonophysics, 595, 69–89.

Nocquet, J.-M. (2012), Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results, Tectonophysics, 579, 220–242.

Nucci, R., E. Serpelloni, L. Faenza, A. Garcia, and M. E. Belardinelli (2023), Comparative Analysis of Methods to Estimate Geodetic Strain Rates from GNSS Data in Italy, Annals of Geophysics.

Nyst, M., and W. Thatcher (2004), New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research: Solid Earth, 109(B11).

Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bulletin of the seismological society of America, 75(4), 1135–1154.

Pagani, C., T. Bodin, M. Métois, and C. Lasserre (2021), Bayesian Estimation of Surface Strain Rates From Global Navigation Satellite System Measurements: Application to the Southwestern United States, Journal of Geophysical Research: Solid Earth, 126(6), e2021JB021,905.

Palano, M., L. Ferranti, C. Monaco, M. Mattia, M. Aloisi, V. Bruno, F. Cannavò, and G. Siligato (2012), GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean, Journal of Geophysical Research: Solid Earth, 117 (B7).

Perouse, E., N. Chamot-Rooke, A. Rabaute, P. Briole, F. Jouanne, I. Georgiev, and D. Dimitrov (2012), Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow, Geochemistry, Geophysics, Geosystems, 13(9).

Piña-Valdés, J., A. Socquet, C. Beauval, M.-P. Doin, N. D’Agostino, and Z.-K. Shen (2022), 3D GNSS velocity field sheds light on the deformation mechanisms in Europe: Effects of the vertical crustal motion on the distribution of seismicity, Journal of Geophysical Research: Solid Earth, 127 (6), e2021JB023,451.

Reilinger, R., S. McClusky, D. Paradissis, S. Ergintav, and P. Vernant (2010), Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, 488(1), 22–30.

Rigo, A., H. Lyon-Caen, R. Armijo, A. Deschamps, D. Hatzfeld, K. Makropoulos, P. Papadimitriou, and

I. Kassaras (1996), A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms, Geophysical Journal International, 126(3), 663–688.

Rong, Y., P. Bird, and D. Jackson (2016), Earthquake potential and magnitude limits inferred from a geodetic strain-rate model for southern Europe, Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205(1), 509–522.

Sambridge, M., T. Bodin, K. Gallagher, and H. Tkalčić (2013), Transdimensional inference in the geosciences, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984), 20110,547.

Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005), Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks, Geophysical Journal International, 161(3), 861–880.

Serpelloni, E., A. Cavaliere, L. Martelli, F. Pintori, L. Anderlini, A. Borghi, D. Randazzo, S. Bruni, R. Devoti, P. Perfetti, et al. (2022), Surface velocities and strain-rates in the Euro-Mediterranean region from massive GPS data processing, Frontiers in Earth Science, 10, 907,897.

Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang (2015), Optimal interpolation of spatially discretized geodetic data, Bulletin of the Seismological Society of America, 105(4), 2117–2127.

Tape, C., P. Musé, M. Simons, D. Dong, and F. Webb (2009), Multiscale estimation of GPS velocity fields, Geophysical Journal International, 179(2), 945–971.

USGS (2025), Earthquake Catalog.

Ventura, B. M., E. Serpelloni, A. Argnani, A. Bonforte, R. Bürgmann, M. Anzidei, P. Baldi, and G. Puglisi (2014), Fast geodetic strain-rates in eastern Sicily (southern Italy): New insights into block tectonics and seismic potential in the area of the great 1693 earthquake, Earth and planetary science letters, 404, 77–88.

Vernant, P., R. Reilinger, and S. McClusky (2014), Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth and Planetary Science Letters, 385, 122–129.

Walpersdorf, A., L. Pinget, P. Vernant, C. Sue, A. Deprez, and R. team (2018), Does long-term GPS in the Western Alps finally confirm earthquake mechanisms?, Tectonics, 37 (10), 3721–3737.